

Environmental Flow Study Review for the Yarra River

Melbourne Water

Final Report

0008 | Final June 19, 2018

Environmental Flow Study Review for the Yarra River

Project No:	IS220900
Document Title:	Final Report
Document No.:	8
Revision:	Final
Date:	June 19, 2018
Client Name:	Melbourne Water
Client No:	Client Reference
Project Manager:	Project Manager
Author:	Peter Sandercock, Simon Treadwell, Joanna Szemis, Paul Boon, Wayne Koster and Josh Griffiths
File Name:	J:\IE\Projects\03_Southern\IS220900\21 Deliverables\0008_IS220900_Yarra_Flows_Review_Final_Report.docx

Jacobs Australia Pty Limited

52 Mitchell St PO Box 952 Bendigo VIC 3552 Australia 8668 6206

www.jacobs.com

© Copyright 2018 Jacobs Australia Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
0001	25/01/2018	Draft – Distributed to EFTP	P. Sandercock		
0002	25/01/2018			EFTP Workshop	
0003	20/02/2018	Draft	P. Sandercock	P. Boon, W. Koster, J. Griffiths	
0004	18/04/2018	Draft	P. Sandercock	S. Treadwell	
0005	02/05/2018	Draft	P. Sandercock		
0006	02/05/2018	Draft	P. Sandercock		
0007	12/06/2018	Final	P. Sandercock	J. Szemis, S. Treadwell	S. Treadwell
0008	19/06/2018	Final	P. Sandercock	S. Treadwell	S. Treadwell

Contents

1.	Environmental Flow Study Review1
1.1	Introduction1
1.2	Review and update of flow recommendations
1.2.1	Technical review of ecological objectives and flow recommendations
1.2.2	Changes to ecological objectives
1.2.3	Changes to flow recommendations
1.3	Climate change impacts on Yarra River flows11
1.3.1	Outlook11
1.3.2	Assessment using the Victoria Climate Change Guidelines11
1.3.3	Assessment using stochastically generated climate change scenarios19
1.3.4	Summary and conclusions
1.4	Guidance on prioritisation of watering actions25
1.4.1	Review of prioritisation of environmental flow objectives under varying climatic scenarios25
1.4.2	Additional considerations
1.5	Flow management tools
1.6	Other recommendations
1.6.1	Monitoring and investigations
1.6.2	Complementary management actions
2.	References

Appendix A. Ecological objectives

Appendix B. Complementary management objectives

Appendix C. Summary Flow Recommendations

Appendix D. Flow recommendations

1. Environmental Flow Study Review

1.1 Introduction

This report documents a review and update of specific flow recommendations for the Yarra River, undertaken by an Environmental Flow Technical Panel (EFTP) and Melbourne Water. Melbourne Water identified a number of aspects to be considered within this environmental flow study review, and include:

- 1) New findings in past 5 years that provides grounds for revising flow recommendations and new studies that support or increase confidence around existing and revised flow recommendations.
- 2) Reach 2 Winter low flow recommendations under a changing climate outlook.
- 3) New flow recommendations for Platypus.
- 4) Any new knowledge on the relationship between amenity / social / cultural values and environmental flows.
- 5) Guidance on the inter-annual Environmental Water priority watering actions in a changing climate and climate change impacts raised in the Yarra River Environmental Water Management Plan (Jacobs 2017f).

This FLOWS review and update is limited to Reaches 1-6 (Table 1.1, Figure 1.1). Reach 7 (Estuary), Reach 8 (Watts River) and Reach 9 (Plenty River) are excluded from the review and update.

Rea	ach	Site no.	Site location	Gauge
1	Upper Yarra Reservoir to Armstrong Creek junction	1	Downstream of Upper Yarra Reservoir, Reefton	Doctors Creek
2	Armstrong Creek to Millgrove	2a	Warburton East (downstream of major tributary harvesting operations)	Millgrove
		2b	Millgrove gauge	Millgrove
3	Millgrove to Watts River junction	3a	Immediately upstream of Healesville-Woori Yallock Rd	Yarra Grange
		3b	Everard Park, upstream of Maroondah Highway.	Yarra Grange
4	Watts River to top of Yering Gorge	4	Tarrawarra Abbey, Yarra Glen.	Yarra Glen
5	Top of Yering Gorge to Mullum Mullum Creek	5a	Immediately downstream of Yering Gorge pumping station.	Warrandyte
		5b	Everard Drive, Warrandyte	
6	6 Mullum Mullum Creek to Dights Falls		Finns Reserve	
			Banyule Flats, downstream of Plenty River	

Table 1.1 : Yarra FLOWS Reaches considered in this review and update.

Final Report

JACOBS[°]

Figure 1.1 : Yarra River reaches for environmental water management. Source: VEWH (2016).

1.2 Review and update of flow recommendations

1.2.1 Technical review of ecological objectives and flow recommendations

Each member of the EFTP completed a technical review of ecological objectives and flow recommendations as documented in the 2012 FLOWS Study (SKM 2012). Particular aspects that this review included:

- The development of new flow recommendations and objectives for Platypus, drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016).
- More explicit consideration of birds and frogs in flow recommendations, drawing upon information documented in Jacobs (2017f) and with consideration to the new Health Waterway Strategy.
- Response of fish monitoring conducted by ARI for the purposes of understanding the response of native fish to environmental flows, notably Australian Grayling and Macquarie Perch (Tonkin et al. 2017). This information has been used to revise current flow recommendations, especially those related to migration and spawning triggers.
- Analysis of new water quality data collected from the Dights Falls weir pool to understand and confirm / refine flow recommendations to prevent (or mitigate) low dissolved oxygen conditions. Pool water quality data for the Yarra River is currently limited to Dights Falls weir pool and this pool currently serves as an indicator of water quality for pools in other reaches (i.e., if conditions are suitable in Dights Falls weir pool, other pools are also likely to be suitable). It is acknowledged that there are also some pools downstream of Yering Gorge that have experienced elevated salinity at very low flows (<200 ML/d and see Ewert & Pettigrove 2003), but current minimum flow recommendations are considered sufficient to maintain water quality in those pools (SKM 2005, 2012).
- Refinement of acceptable release limits from the Upper Yarra Reservoir with reference to recent monitoring of flow releases downstream of the reservoir (GHD 2016).
- Recent hydraulic modelling (completed by Jacobs) associated with billabong investigations that can help to clarify bank full and overbank flow magnitudes at various locations (Yarra Bridge – Reach 3, Spadonis Reserve and Yering Backswamp – Reach 4), Banyule Flats and Bollin Bollin – Reach 6). More explicit guidance on the level of flow/rather than the discharge needed for water to fill these billabongs.
- New insights of the effects of urban runoff on flows, in particular the frequency of high intensity disturbance events and the impacts these have on channel form (Jacobs 2017b).
- Consideration of the social and amenity values of water and linkages with water-dependent indigenous cultural values. The recent Yarra River EWMP (Jacobs 2017f) provides a brief description of social and amenity values and linkages with water-dependent indigenous cultural values, however this is an area of ongoing work, and as such, is not available in a form that can be readily incorporated into this Flow Review.

1.2.2 Changes to ecological objectives

A summary of changes to ecological objectives is presented in Table 1.2. Revised ecological objective tables and a more detailed description of changes is presented in Appendix A. Following is a brief summary of changes made:

- Minor changes to 'Function', 'Expected response' and 'Timing' components of Geomorphology and Macroinvertebrate objectives. For geomorphology, changes made highlight potential influence of urban runoff on channel dimensions and form in Reaches 4, 5 and 6. For macroinvertebrates, changes made capture assumed seasonal changes in low flows on macroinvertebrate biomass.
- Fish objectives have been revised so that the 'Functions' are more species specific, the 'Timing' of flow components refined and more measurable 'Expected responses' provided, where new supporting evidence exists, particularly for Australian grayling, tupong, eels, lamprey and Macquarie perch.
- Vegetation objectives have been restructured to reflect different vegetation habitats (in-stream, riparian, billabong/floodplain and terrestrial). 'Functions' and 'Expected responses' of flow components have been revised to make them accord better with revised objectives.

Objectives that are not linked to a specific flow component but are contingent on complementary management actions have been removed from the ecological objectives tables and are now summarised in a separate table (refer to Table B.1 in Appendix B). This has meant that water quality objectives have now been removed from ecological objectives tables for Reaches 1-4.

JACOB

 New ecological objectives have been developed for platypus. Generic ecological objectives have also been included for Birds, Frogs and Amenity.

Table 1.2 : Summary of changes to ecological objectives.

Asset / Description of changes

Geomorphology

No changes made to geomorphology objectives in Reaches 1, 2 and 3. Minor changes to 'Functions' and 'Expected response' components of geomorphology objectives for Reaches 4, 5 and 6 with reference to new insights of the effects of urban runoff on flows, in particular the frequency of high intensity disturbance events and the impacts these have on channel form (Jacobs 2017b). In particular, the intent should be to limit the frequency and duration of flows above scouring thresholds.

Macroinvertebrates

Modified low flow objective and related 'Functions' so as to capture assumed changes in Summer / Autumn and Winter / Spring macroinvertebrate biomass production linked to inundation of habitat areas. Evidence suggests that winter biomass production is low compared with summer production due to cooler temperature conditions. To compensate for this a larger area of wetted habitat is required to maintain both primary (algal) and secondary (macroinvertebrate) production over the winter period. This is particularly important in streams supporting platypus because they have a high food demand, especially during winter and spring when females are gestating and lactating. Hence, winter requires higher base flows than summer in order to provide access to additional habitat. The 'Timing' of flow components has also been refined.

Fish

The 'Functions' associated with fish objectives have been made more species-specific. New species-specific 'Functions' have been developed, the associated 'Timing' of flow components refined, and more measurable 'Expected responses' provided, where new supporting evidence exists, particularly for Australian grayling, tupong, eels, lamprey, and Macquarie perch.

Vegetation

Restructured objectives according to (a) in-stream, (b) riparian, (c) billabong/floodplain, and (d) terrestrial habitats. In Reaches 1 and 2, the maintenance of in-stream microbial biofilms is explicitly stated as objectives. Where possible, objectives were rationalised by collapsing multiple objectives into a smaller set of more coherent objectives that addressed a number of desired ecological outcomes; this resulted in a reduction of the number of individual objectives for Reaches 3–6.

The 'Functions' of various flow components were revised for each reach to make them accord better with the revised objectives and to be more transparent (e.g. the ecological functions of low-flows in the Summer/Autumn and Winter/Spring periods are now separated, whereas they were considered together in the original report). In some cases (e.g. Reach 3) freshes were divided into small and large events, the former targeted mostly at fish (but with some benefits expected for vegetation) and the latter targeted mostly at vegetation. A Winter/Autumn High Flow was also included in addition to the freshes for some reaches. Note that a single flow component provides for multiple ecological functions.

'Expected responses' by vegetation were revised to make them accord better with the revised ecological 'Functions' of each flow component. 'Functions' and 'Expected responses' are now more clearly related to individual objectives for each flow components, across all the reaches.

Water quality

Water quality objectives that are not linked to a specific flow component but are contingent on complementary management actions have been removed from the ecological objectives tables and summarised in a separate

Asset / Description of changes

table with other complementary objectives. As a result of these changes, water quality objectives are now only included in ecological objectives tables for Reach 5 and 6.

Platypus

New ecological objectives have been developed drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016). A summary of habitat/flow requirements for platypuses is included in the boxed section below.

Birds, Frogs and Amenity

Generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)

Habitat/flow requirements of platypuses

Platypuses are adaptable to a range of environmental conditions as demonstrated by the wide range of aquatic habitats and climatic zones they inhabit across their range (Grant 1992, Grant & Temple-Smith 1998). However, in broad terms, there are three key components required: permanent water, abundant macroinvertebrates, and stable earthen banks to construct burrows. Importantly, platypuses are highly mobile with individual home ranges and daily movements typically encompassing several kilometers (Griffiths et al. 2014, Gust & Handasyde 1995, Kelly et al. 2012, Otley et al. 2000, Serena et al. 1998a) and densities estimated at 1-2/km in a small creek around Melbourne (Serena 1994). Therefore, large contiguous areas of suitable habitat are required to support a self-sustaining platypus population. Population viability analysis (PVA) models have been used to estimate a minimum population size of 30 individuals is required for a platypus population to have a high probability of persisting for 50-100 years with moderate environmental stochasticity (Serena & Williams 1999), although a much larger population is required to avoid genetic problems in the longer term (Frankham et al. 2014, Soule 1980). Using 30 platypuses as a minimum population size and estimates of typical densities above, we estimate a stretch of at least 15-30 km of suitable contiguous habitat is required. The presence of off-stream (but connected) wetlands can increase the carrying capacity of an area (Serena 1994).

Critically, platypuses require adequate surface water and flow regimes to support a reliable supply of macroinvertebrate prey. Platypuses are adapted to feed exclusively in water where they forage for a range of benthic macroinvertebrates with adults consuming about 15-30% of their bodyweight daily (Holland & Jackson 2002, Krueger et al. 1992). Therefore, many habitat variables associated with platypus presence abundance are those favourable for macroinvertebrates. Platypuses are known to preferentially forage in areas of coarse benthic substrates (i.e. cobbles, rocks, pebbles) and large woody debris (Grant 2004, Serena et al. 2001). Other variables known to be important for platypuses include large riparian trees, overhanging vegetation, pools 1-3 m deep, and near vertical or undercut banks at least 0.5 m above the water (Bethge et al. 2003, Ellem et al. 1998, Grant 2004, Serena et al. 1998a, Serena et al. 1998b, Serena et al. 2001, Worley & Serena 2000). Conversely, platypuses are known to avoid areas of fine substrates (silt or clay) and dense willows (Serena et al. 2001).

The importance of suitable flow regimes for platypus is increasingly understood. Platypus distribution throughout Melbourne is known to be limited by catchment imperviousness (Martin et al. 2013, Serena & Pettigrove 2005) indicating that platypuses are sensitive to direct and indirect impacts of altered flow regimes of urban streams. Urban streams typically suffer from high flow variability with increased magnitude and frequency or high flows and reduced and extended baseflows. Generally, this leads to depauperate macroinvertebrate assemblages, increased erosion and sedimentation, and facilitates input of litter and pollutants from the surrounding catchment. High flow events may also increase foraging energetics for platypuses (Griffiths et al. 2014, Gust & Handasyde 1995). Reproduction in platypus has been linked with rainfall (and presumably reliable flows) in the months preceding breeding (March-July; Serena & Grant 2017, Serena et al. 2014), while late spring/summer floods may compromise juvenile recruitment (Bino et al. 2015, Serena et al. 2014).

Therefore, an ideal flow regime for platypuses would include (Jacobs 2017c):

1) maintaining minimum baseflow to maintain habitat for macroinvertebrates and longitudinal connectivity along stream for safe platypus movement;

- 2) moderate variability to support diverse macroinvertebrate community;
- 3) reliable surface water from March-July;
- 4) avoidance of bankfull or overbank flows during summer.

1.2.3 Changes to flow recommendations

A summary of revised flow recommendations for the six reaches is presented in Table 1.3. Tabulated summaries of the revised flow recommendations for each of the reaches are also included in Appendix C.

A summary of changes to flow recommendations is documented in Table 1.4. Revised flow recommendations tables and a more detailed description of changes are presented in Appendix D.

Following is a brief summary of changes made:

- Colour coding of flow components to highlight flows those that are managed (blue) from those that are expected naturally and hence do not require active delivery (green)
- Revised objectives to include explicit reference to native fish species in each reach and specific reference to role of flows (i.e. Summer/Autumn freshes cue downstream migration of eels and may facilitate juvenile platypus dispersal).
- Review and update of flow recommendations (volume, frequency and when, duration and rise/fall) for wet/average and dry years.
- Rates of rise and fall have been reviewed for all reaches. The rate of rise has been increased to 2.0; as it sits between 50-80th percentile for all reaches, this value is still conservative. In terms of rate of fall, we want this to remain slow to prevent ecological impacts (e.g. bank slumping and stranding of biota). Hydrological analysis indicates that for all reaches 0.8 would be sufficient. For natural flow events, rates of rise/fall have been changed to N/A (not applicable) as there is no control over this.
- Recommended change in flow regime for Reach 1 with more frequent managed releases of Winter/Spring High and Bankfull flows. These changes in the recommended flow regime should be monitored to assess the cumulative impact of high flow releases on the channel and rate of recovery between events.
- Recommended transitioning in low flows from Summer/Autumn to Winter /Spring in Reach 2 and 3.
- Recommendations for the duration of freshes were also re-examined, and in some cases shortened.
 Changes to the volume, timing and duration of Winter / Spring fresh recommendation in Reaches 2-6.
 This results in a lower/longer duration fresh in June or July to facilitate fish migration and a higher/shorter duration fresh between June and September to maintain flood-tolerant vegetation higher on banks.
- Recommended changes in the timing of Winter/Spring high flow from October-November to September-October (prior to Macquarie Perch spawning) for Reaches 3-6.
- A literature review was undertaken to inform the length of inundation to drown-out terrestrial vegetation; this review supported, in general, the previous 14-day recommended duration of Winter/Spring high flow to drown out terrestrial vegetation.
- Magnitude of overbank flows has been revised for Reaches 3, 4 and 6 following a review of results from recent hydraulic modelling associated with billabong investigations.

Season	Flow	Wet/Avg/	Reach									
		Dry	1	2	3	4	5	6				
Summer / Autumn (Dec-	Low flow	Wet/Avg Dry	10 ML/day	80 ML/day	Min 120 ML/day at Woori Yallock and 150 ML/day at Everard Park	Min 200 ML/day	Min 200 ML/day	Min 300 – 450 ML/day				
May)	Fresh	Wet/Avg Dry	60 ML/day (4/yr, min 1 day at peak)	350 ML/day (3/yr, min 2 days at peak)	350 ML/day at Woori Yallock and 450 ML/day at Everard Park (3/yr, min 2 days at peak)	Min 450 ML/day (3/yr, min 2 days at peak)	Min 750 ML/day (3/yr, min 2 days at peak)	Min 750 ML/day (3/yr, min 2 days at peak)				
	High	Wet/Avg Dry	Not recommended	560 ML/day (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 day duration)	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 days at peak, Event 14 days duration)	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 days at peak, Event 14 days duration)	1300 ML/day (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 days at peak)	1300 ML/day (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 days at peak)				
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg	10 ML/day	Min 200-350 ML/day (200 ML/day Jun, 350 ML/day Jul-Nov)	Min 200-350 ML/day (200 ML/day Jun, 350 ML/day Jul- Nov)	Min 350 ML/day	Median 750 ML/day with a min 350 ML/day	Median 750 ML/day with a min 350 ML/day				
		Dry		Min 80-350 ML/day (80 ML/day Jun/Jul, 200 ML/day Jul, 350 ML/day Aug-Oct, 200 ML/day Nov)	Min 80-350 ML/day (80 ML/day Jun/Jul, 200 ML/day Jul, 350 ML/day Aug-Oct, 200 ML/day Nov)	Min 350 ML/day, but may not reach this magnitude until late June or mid July	Median 600 ML/day with a min 350 ML/day	Median 600 ML/day with a min 350 ML/day				
	Fresh	Wet/Avg Dry	100 ML/day (3/yr, min 2 day at peak)	700 ML/day (2/yr Jun- Aug, 3 days at peak)	1100 ML/day (Min 700 ML/day) (1/yr in Jun/Jul, min 7 days at peak) 1800 ML/day (1/yr in Jun-Sep, min 2 days at peak)	1100 ML/day (1/yr in Jun/Jul, min 7 days at peak) 2000 ML/day (1/yr in Jun- Sep, min 2 days at peak)	1300 ML/day (1/yr in Jun/Jul, min 7 days at peak) 2500 ML/day (1/yr in Jun-Sep, min 2 days at peak)	1300 ML/day (1/yr in Jun/Jul, min 7 days at peak) 2500 ML/day (1/yr in Jun-Sep, min 2 days at peak)				
	High	Wet/Avg	300 ML/day (1/yr or min 1 in 2 yrs, 3 days at peak)	700 ML/day (1/yr in Sep, 14 days duration)	1800 ML/day (1/yr in Sep/Oct, 14 days duration)	2000 ML/day (1/yr in Sep/Oct, 14 days duration)	2500 ML/day (1/yr in Sep/Oct, 14 days duration)	2500 ML/day (1/yr in Sep/Oct, 14 days duration)				
		Dry		Not necessary to delive	r but allow to occur naturally							
	Bankfull	Wet/Avg	600 ML/day (1 in 2-5 yrs in June-	2700 ML/day (1 in 2 yrs, 2 days at peak)	4000 ML/day (1/yr, 2 days duration)	5000 ML/day (1/yr, 2 days duration)	5000 ML/day (1/yr, 2 days duration)	11,000 ML/day (1/yr, 2 days duration)				
		Dry	Sept, 3 days)	Not expected, but let it occur naturally.								
	Bankfull / Overbank	kfull / bank Wet/Avg Not recommended		2700 ML/day (1 in 2 yrs, 2 days at peak)	4000-6000 ML/day (1 in 1-2 yrs, 1-2 days duration)	8000-10,000 ML/day (1 in 1-2 yrs, 1-2 days duration)	5000-14,000 ML/day (1/yr, 1-2 days duration)	11,000-16,000 ML/day (1/yr, 1-2 days duration)				

Not expected, but let it occur naturally.

Table 1.3 : Summary of revised flow recommendations. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green). For further information on ecological objectives and expected ecological response to flow components refer to tables in Appendixes.

Dry

Table 1.4 : Summary of changes to flow recommendations.

Reach / Description of changes

1 Upper Yarra Reservoir to Armstrong Creek junction

- Acceptable release limits from the Upper Yarra Reservoir have been refined with reference to recent monitoring of flow releases downstream of the reservoir (GHD 2016).
- Recommended change in flow regime, with more frequent managed releases of Winter/Spring High and Bankfull flows. The volume of the recommended bankfull flow has also changed from 1100 ML/day to 600 ML/day.
- These changes in the recommended flow regime should be monitored to assess the cumulative impact of high flow releases on the channel and rate of recovery between events.

2 Armstrong Creek to Millgrove

- Recommend transition in low flows from Summer/Autumn to Winter /Spring. In Wet/Average years recommend a lower minimum flow in June (200 ML/day) transitioning to 350 ML/day in July. In Dry years, the following low flow transitions are recommended; 80 ML/day June, 200 ML/Day July, 350 ML/day August – October and 200 ML/day in November.
- Changes to the timing and duration of Winter / Spring freshes so that these are consistent with revisions to flow recommendations in downstream Reaches 3-6. Change in recommended timing of Winter / Spring freshes from between June and September to between June and August and shortened recommended duration from 7 days to 3 days at peak (since this shorter duration is likely to be sufficient to meet the vegetation and fish objectives).
- A literature review was undertaken to inform the length of inundation required to drown out terrestrial vegetation. This generally supported the 14-day duration of the Winter/Spring high flow recommendation for this reach and reaches downstream.

3 Millgrove to Watts River junction

- Similar to Reach 2, recommend transition in low flows from Summer/Autumn to Winter /Spring. In Wet/Average years recommend a lower minimum flow in June (200 ML/day) transitioning to 350 ML/day in July. In Dry years, the following low flow transitions are recommended; 80 ML/day June, 200 ML/Day July, 350 ML/day August – October and 200 ML/day in November. Allow incoming tributaries to provide additional flow and variation in average and wet years.
- Revised volume, timing and duration of Winter / Spring fresh recommendation. Changed from 2 Freshes of 1800 ML/Day for seven days at peak to: a 1100 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water); and a 1800 ML/day fresh between June and September, min 2 days at peak – higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks.
- Changed timing of Winter/Spring high flow from October-November to September-October (prior to Macquarie Perch spawning). As noted for Reach 2, we reviewed and retained the recommended 14-day duration of the Winter/Spring high flow to drown out terrestrial vegetation.
- Changed recommended volume of overbank flow from 9000 ML/day to 4000-6000 ML/day as a result of more recent investigations into the water regime of Yarra Bridge Billabong.

4 Watts River to top of Yering Gorge

- Revised volume, timing and duration of Winter / Spring fresh recommendation. Changed from 2 Freshes of 2000 ML/day for seven days at peak to: a 1100 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak; and a 2000 ML/day fresh between June and September (assuming additional volume is provided by Watts River and other tributaries), min 2 days at peak higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks.
- Changed timing of Winter/Spring high flow from October-November to September-October (prior to Macquarie Perch spawning). As noted for Reach 2, we reviewed and retained the recommended 14-day duration of Winter/Spring high flow to drown out terrestrial vegetation.

Reach / Description of changes

- · Revised recommended frequency of bankfull flow to 1 per year, consistent with upstream reach.
- Changed recommended volume of overbank flow from 10,000 ML/day to 8,000-10,000 ML/day as a result of more recent investigations into the water regime of Yering Swamp and Spadoni's Billabong.

5 Top of Yering Gorge to Mullum Mullum Creek

- Revised volume, timing and duration of Winter / Spring fresh recommendation. Changed from 2 Freshes of 2500 ML/day for seven days at peak to: a 1300 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water); and a 2500 ML/day fresh between June and September, min 2 days at peak higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks.
- Changed timing of Winter/Spring high flow from October-November to September-October (prior to Macquarie Perch spawning). As noted for Reach 2, we reviewed and retained the recommended 14-day duration of Winter/Spring high flow to drown out terrestrial vegetation.
- Combined 'Small Bankfull' and 'Large Bankfull' to create new recommendation for 'Bankfull/Overbank' events. Revised frequency to 1 per year, consistent with upstream reach.

6 Mullum Mullum Creek to Dights Falls

- Revised volume, timing and duration of Winter / Spring fresh recommendation. Changed from 2 Freshes of 2500 M/Day for seven days at peak to: a 1300 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water); and a 2500 ML/day fresh between June and September, min 2 days at peak higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks.
- Changed timing of Winter/Spring high flow from October-November to September-October (prior to Macquarie Perch spawning). As noted for Reach 2, we reviewed and retained the recommended 14-day duration of Winter/Spring high flow to drown out terrestrial vegetation.
- Combined 'Small Bankfull' and 'Large Bankfull' to create new recommendation for 'Bankfull/Overbank' events. Changed volume from 13,000-21,500 to 11,000-16,000 ML/day as a result of more recent investigations at Bolin Bolin and Bunyule Billabong. Revised frequency to 1 per year, consistent with upstream reach.

Reach 2 Winter/Spring low flow recommendations have been in revised for wet/average and dry years. The current Winter low flow recommendation of 350 ML/d in average and wet years, and 200 ML/d in dry years is almost never met in June, and release from the environmental entitlement is required to deliver this flow, despite flows of 80 ML/d being released for operational requirements during June. Winter low flows in this reach are aimed to maintain access to habitat for bugs and fish. To meet these objectives, riffle habitat needs to be accessed and stream vegetation should be maintained and/or rehabilitated (microbial as well as macrophytic).

Two important revisions were made to the original recommendations. First, the objectives, in accord with the hydrology and hydraulic models, were reviewed to determine whether they could be achieved with less water. If so, water from the environmental entitlement could be reserved for other flow releases. Second, we assessed whether a shoulder or transition recommendation could be made that enabled a smoother transition to the Winter low flow. The outcomes of this review is that it is recommended that there should be a transition in low flows from Summer/Autumn to Winter /Spring. In wet/average years a minimum low flow of 200 ML/day is recommended in June transitioning to 350 ML/day in July. In dry years, a minimum of low flow of 80 ML/day is recommended in June, transitioning to 200 ML/Day in July, 350 ML/day from August to October and then dropping down to 200 ML/day in November. These revised recommendations are illustrated in Figure 1.2.

Figure 1.2 : Plot showing the new recommended transition in low flows from Summer/Autumn (Dec-May) to Winter/Spring (Jun-Nov) in Reach 2 for Wet/Average (blue dotted lines) and Dry years (orange dotted lines). Existing flow recommendations are shown in the background (solid lines - Wet/Avg 350 ML/day and Dry 200 ML/day Jun-Nov).

The volume, timing and duration of Winter/Spring freshes and High flow have also been revised. An illustration of updated flow recommendation is presented in Figure 1.3 for Reach 2.

Figure 1.3 : Plot highlighting recommended Winter / Spring Freshes and alternative scenarios for delivering these events to achieve a similar outcome (example provided for Reach 2). Changes in low flow recommendation are documented in Figure 1.2.

The recommendation for Freshes has changed from two freshes of 1800 M/Day for seven days at peak to two peaks of different magnitude:

- 1100 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water); and
- 1800 ML/day fresh between June and September, min 2 days at peak higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks.

The timing of the Winter/Spring high flow has also changed from October-November to September-October (prior to Macquarie Perch spawning). The basis for the 14-day duration of the high flow to drown out terrestrial vegetation has also been reviewed by checking the available literature on the topic, and the original recommendation upheld.

1.3 Climate change impacts on Yarra River flows

1.3.1 Outlook

Victoria's climate is changing. Greenhouse gas concentrations and surface air temperatures have increased, and are now influencing the climate. Global average combined land and ocean surface temperature show a warming of 0.85 [0.65 to 1.06]°C over the period 1880 to 2012 (IPCC 2014). Local temperature trends in Victoria over a similar period show similar trends (Grose et al. 2015, Timbal et al. 2016).

Scientists globally, and in Victoria, have observed that climate change can occur as both gradual and step changes. In Victoria it appears that there may have been changes in climate that occurred in the mid 1970's and again post 1997. These changes have resulted in a reduction in cool season (April to October) rainfall over recent decades, and were particularly evident during the Millennium Drought, but have continued in many parts of Victoria since the end of the drought (Timbal et al. 2016).

Changes in rainfall are amplified when translated into changes in catchment runoff. Historical reductions in the runoff in Victorian streams, particularly over the Millennium Drought, have been well documented. They have been presented in each year's Victorian Water Accounts (e.g. DELWP 2015), with the statistical significance of a step change in streamflow being identified in several studies, including the CSIRO Murray-Darling Basin Sustainable Yields project (CSIRO 2008), and by the Bureau of Meteorology at its hydrologic reference stations across Victoria (Bureau of Meteorology 2016).

With increased greenhouse gas concentrations, most of Victoria is expected to become hotter and drier. The medium and high climate change scenarios show a decrease in rainfall and runoff across all of Victoria by 2040, with the greatest impacts seen in western Victoria. The low climate change scenario projects a small increase in rainfall and runoff across Victoria in 2040 and 2065. Table 1.5 shows the predicted changes in annual runoff under a range of climate chance scenarios for the Yarra River basin. It should be noted that the seasonal factors given in Potter et al. (2016) were also investigated however the change in compliance compared to the annual factors was minimal.

Average annual	Change relative to current climate baseline (%)												
runoff (mm) (1975-2014)		Year 2040		Year 2065									
Historic	10 th percentile	50 th percentile	90 th percentile	10 th percentile	50 th percentile	90 th percentile							
	(LOW)	(iviedium)	(High)	(LOW)	(iviedium)	(High)							
227 mm	+10.0 %	-11.0 %	-29.2 %	+0.8 %	-16.4 %	-44.3 %							

Table 1.5 : Projected changes in average annual runoff relative to the current climate baseline across all seasons for the Yarra Basin (Source: DELWP 2016)

The impact of climate change on Yarra Flows and compliance with flow recommendation was assessed using the Victoria Climate Change Guidelines (DELWP 2016) as well as a stochastically generated climate change projections developed by the University of Melbourne. Details surrounding each method are presented as well as the results in the following sections.

1.3.2 Assessment using the Victoria Climate Change Guidelines

Compliance Assessment

Modelling of climate change impacts on Yarra River flows (Environmental Flow Reaches 2 and 5) was undertaken by taking the historical flow regime (i.e. gauged data) and applying a flow reduction consistent with the predicted runoff reductions in Table 1.5. The climate change flow scenarios were then assessed to see

how well the flow regimes complied with updated environmental flow recommendations using the compliance assessment process described in the Yarra Environmental FLOWS Study Review (SKM 2012). It should be noted that classification of wet, average, dry years was undertaken using rainfall and dividing equally into three parts, while shortfalls were calculated as the volume required to meet environmental flow volume requirements. Rainfall was chosen in order to be consistent with the approach used in SKM (2012), also, rainfall provides a better representation of actual climate conditions because unlike streamflow, rainfall is not impacted by or regulation / extraction.

Table 1.6 : Compliance with environmental flow recommendations under unimpacted (natural), historical (gauged) and climate change scenarios and for wet, average and dry climate type years for the Yarra River environmental flow Reach 2 noting that environmental flow recommendations differ between wet, average and dry climate years.

		-	<u> </u>	Jnim pact	ed				-		Historica	al .					CC 2040	Medium	(-11.0 %)				CC 2065	Mediun	ו (-16.4%)		
Be	Autumn Low Flow	Autumn Fresh	dh	or ing Low Flow	or ing Fresh	_	or ing Bankfull / Overbank	Autumn Low Flow	Autumn Fresh	gh	or ing Low Flow	or ing Fresh	_	or ing Bankfull / Overbank	Autumn Low Flow	Autumn Fresh	gh	or ing Low Flow	oring Fresh		or ing Bankfull / Ove rbank	Autumn Low Flow	Autumn Fresh	dh	or ing Low Flow	oring Fresh		or ing Bankfull / Overbank
te Typ	r / Jer	r / Jer	nn Hig	er / Sp	er / Sp	dgH igh	er / Sp	r / Jer	r / Jet	Huu	er / Sp	er / Sp	High	er / Sp	r / Jer	rer / 1	hun	er / Sp	er / Sp	high	er / Sp	r/ Jer	r / Jer	Hu	er / Sp	er / Sp	High	er / Sp
Climal	Jumu	nmus	∿utun	Winte	Winte	Sprinç	Winte	nmus	nmu	Autun	Winte	Winte	Sprinç	Winte	nmu	nmu	Autun	Winte	Winte	Sprinç	Winte	nmu	nmuŝ	Autun	Winte	Winte	Sprinç	Winte
W 1964	1 0	0	3,360	0	1,275	0	0	0	540	3,360	752	1,275	0	0	0	1,080	3,360	1,176	1,275	0	0	0	1,620	3,360	1,463	1,275	0	0
A 1965 W 1966	5 0 5 0	0	0	0	1,275	0	4,850	0	540 0	3,360	4,451	0	5,950	4,850	12	540 540	3,360	6,580 810	0	5,950	4,850	45	540 540	3,360	1,420	0	5,950	4,850
D 1967	7 0	0	3,360	446	1,478	NA	4,985	2 709	1,080	3,360	11,423 0	2,955	NA	4,985	7	540	3,360	13,849 120	2,955	NA	4,985	31	540	3,360	15,084 373	2,955	NA	4,985
A 1969	9 0	0	0	0	1,275	0	0	2	0	3,360	2,037	0	0	4,850	25	0	3,360	3,279	0	0	4,850	53	0	3,360	4,080	0	0	4,850
W 1970 W 1977	0 0	540 0	0	0	1,275	0	0	0	0	0	39 2,147	1,275 0	0 5,950	0	0	0	0 3,360	256 3,548	1,275	0 5,950	0	0	0	0 3,360	467 4,342	1,275 0	0 5,950	0
D 1972	2 0	0	3,360	0	1,478	NA	4,985	0	0	3,360	14,147	2,955	NA	4,985	0	0	3,360	16,598	2,955	NA	4,985	0	0	3,360	17,904	2,955	NA	4,985
W 1973	4 0	540	0	0	0	0	0	233	0	3,360	1,665	0	0	4,650	583	540	3,360	2,287	0	0	4,650	821	540	3,360	2,597	1,275	0	4,850
W 1975	5 0 5 0	0 540	0	0	0	0 NA	0	0	540	3,360	1,526	1,275	0 NA	0	0	540	3,360	2,524	1,275	0 NA	0	0	540	3,360	3,198	1,275	0 NA	0
W 197	7 0	0	0	0	1,275	0	0	0	0	3,360	11,810	0	5,950	0	0	540	3,360	13,612	0	5,950	0	0	540	3,360	14,562	0	5,950	0
W 1978 D 1979	30 90	0	3,360 3,360	0	1,275	0 NA	0 4,985	0	1,620	3,360	4,390	1,275	0 NA	4,850 4,985	0	1,620	3,360 3,360	6,193 12,349	1,275	0 NA	4,850 4,985	13	1,620	3,360	7,290	1,275	5,950 NA	4,850 4,985
A 1980	0 0	0	3,360	0	1,275	0	0	222	1,620	3,360	10,255	1,275	5,950	0	668	1,620	3,360	12,844	1,275	5,950	4,850	988	1,620	3,360	14,246	1,275	5,950	4,850
D 1982	2 0	0	3,360	0	0	NA	4,985	6	1,080	3,360	24,136	2,955	5,950 NA	4,985	152	1,620	3,360	26,320	2,955	5,950 NA	4,985	331	1,620	3,360	27,417	2,955	NA	4,850
A 1983	8 68 1 0	0	3,360	0	0	0	0	3,308	1,620 540	3,360	10,611	2,550	5,950	4,850	4,134 53	1,620 540	3,360	13,179 8,638	2,550	5,950	4,850	4,581	1,620	3,360	9.849	2,550	5,950	4,850
A 198	5 0	0	3,360	0	0	0	0	0	1,620	3,360	11,269	0	5,950	0	9	1,620	3,360	13,852	0	5,950	0	65	1,620	3,360	15,202	0 0	5,950	0
A 198	5 0 7 0	540 0	0	0	1,275	0	0 4,850	0	0 1,080	3,360	5,413 13,978	1,275	5,950	4,850	0	0 1,080	3,360	7,851	1,275	5,950	4,850	0	0	3,360	9,302 18,473	1,275	5,950	4,850
A 1988	8 0	0	3,360	0	0	0	4,850	326	1,620	3,360	15,034	1,275	5,950	4,850	867	1,620	3,360	18,316	2,550	5,950	4,850	1,243	1,620	3,360	20,100	2,550	5,950	4,850
W 1990	0	0	0	0	0	0	0	9	1,080	3,360	4,754	0	0	4,850	140	1,020	3,360	6,535	0	0	4,850	274	1,020	3,360	7,554	0	0	4,850
A 1991 W 1992	1 0 2 0	1,080 0	3,360	0	0	0	0	0	1,080 0	3,360	4,933	0	0	0	0	1,080 540	3,360	6,191 358	0	0	0	0	1,080 540	3,360	6,943 473	1,275	0	0
W 1993	3 0	1,080	0	0	1,275	0	0	0	1,080	0	201	1,275	0	0	0	1,080	3,360	544	1,275	0	0	0	1,080	3,360	768	1,275	0	0
W 1995	4 U 5 O	540	0	0	1,275	0	4,850	0	0	3,360	4,032	1,275 0	5,950	4,850	0	540	3,360	4,443	1,275 0	5,950	4,850	0	1,080	3,360	5,576	1,275 0	5,950	4,850
W 1996	5 0 7 0	1,080	0	0	0	0 NA	0	0	0	0	130	0		0	0	0	3,360	404	0	0 NA	0	0	0	3,360	629 18.837	0	0 NA	0
D 1998	3 0	0	3,360	0	0	NA	0	0	1,620	3,360	8,246	2,955	NA	4,985	2	1,620	3,360	10,367	2,955	NA	4,985	18	1,620	3,360	11,601	2,955	NA	4,985
D 1999 A 2000	9 19 0 0	0	3,360	0	0	NA 0	4,985 0	0	540 540	3,360	9,538 945	2,955 0	NA 0	4,985 0	0	540 1.080	3,360	12,329 1.769	2,955	NA 0	4,985	0	540 1.080	3,360	13,795 2.462	2,955	NA 0	4,985
D 200	0	0	3,360	0	0	NA	0	0	1,080	3,360	6,088	1,478	NA	4,985	0	1,620	3,360	7,938	1,478	NA	4,985	0	1,620	3,360	8,937	1,478	NA	4,985
D 2002	2 0 3 0	0	3,360	0	0	NA NA	4,985	0 15	1,080	3,360	13,875 1,689	1,478 0	NA	4,985	269	1,080	3,360	16,149 2,003	1,478 0	NA NA	4,985	3 528	1,080	3,360	2,236	2,955 0	NA	4,985
A 2004	4 0	0	3,360	17 617	1,275	0	0	0	1,620	3,360	1,607	0	0	4,850	0	1,620	3,360	2,289	0	0	4,850	0	1,620	3,360	2,731	0	5,950	4,850
D 2000	5 0	540	3,360	8,962	2,955	NA	4,985	5	1,080	3,360	21,189	2,955	NA	4,985	13	1,620	3,360	23,621	2,955	NA	4,985	17	1,620	3,360	24,862	2,955	NA	4,985
D 2003	7 862 3 81	0	3,360	68 1.661	1,478	NA NA	0	17	1,620	3,360	13,346	2,955	NA NA	4,985	80 287	1,620	3,360	15,882	2,955	NA	4,985	182 619	1,620	3,360	17,203	2,955	NA	4,985
D 2009	9 55	0	3,360	0	0	NA	0	269	1,620	3,360	7,414	2,955	NA	0	636	1,620	3,360	9,139	2,955	NA	4,985	885	1,620	3,360	10,098	2,955	NA	4,985
A 2010 W 2011	0	0 1,080	3,360 0	0	0 1,275	0	0	90 0	1,080 0	3,360 0	987 320	0 1,275	0 5,950	0 4,850	324 0	1,620 0	3,360 0	1,825	1,275	0 5,950	0 4,850	526 0	1,620 0	3,360 0	2,490	1,275	0 5,950	0 4,850
A 2012	2 0	1,080	0	0	1,275	0	0	0	0	3,360	492	0	0	0	0	0	3,360	1,516	0	0	4,850	0	0	3,360	2,078	0	0	4,850
D 2013	4 0	0		0	1,478	NA	0	0	0	3,360	2,040	1,478	NA	4,965	1	0	3,360	3,733	1,478	NA	4,985	22	0	3,360	4,859	0	NA	4,985
D 2015	5 0 5 22	0	0 3.360	37	1,478	NA 0	4,985	0	540 540	0	4,230	1,478	NA	4,985	0 28	540 540	0 3,360	6,511	2,955	NA	4,985	0	540 540	0	7,805	2,955	NA	4,985
	- <u></u> 2		Mo	stly.co	mplies	5			040	1	ess th	an	9	5%	20	0	fmax	imum	possi	blesh	ortfall	s / vea	r		2,100			.,000
			Free	quent	ly com	plies				E	Betwee	en	7	5% &	95	5% O	f max	imum	possi	blesh	ortfall	s / yea	r	I				
			Ofte	en con	nplies	-				E	Betwee	n	5	0% &	75	5% o	f max	imum	possi	blesh	ortfall	s / yea	r					
			Occ	asiona	Illy con	nplies	5			E	Betwee	en	2	5% &	50	0% 0	f max	imum	possi	blesh	ortfall	s / yea	r					
			Rare	ely cor	nplies					E	Betwee	en		5% &	25	5% o	f max	imum	possi	blesh	ortfall	s / yea	r					
			Nev	/er cor	nplies					E	Betwee	n		8 %0	E	5% O	f max	imum	possi	blesh	ortfall	s / vea	r	L				

As seen in Table 1.6 under historical and short term climate change outlooks (i.e. CC 2040 Medium scenario), compliance with flow recommendations remains relatively good in wet and average climate years with compliance remaining relatively similar. Shortfall volumes were slightly greater in the 2040 scenario. However, there is a decrease in compliance in dry climate years. Under the longer term climate change scenario (i.e. CC

2065 Medium), there is a significant decrease in compliance with flow recommendations, including in wet climate years. Although not presented, there was even greater decreases in compliance for all of the flow recommendations for the 2065 high climate change outlook. In terms of Reach 5 shown in Table 1.7, a similar trend is exhibited as in Reach 2, however overall compliance is predicted to be better, despite overall shortfall volumes being greater, which is caused by the large spring high shortfall volume. This suggests that Reach 5 is less vulnerable then Reach 2, as downstream flows and tributary inflows are large enough to improve compliance with the majority of the recommendations.

Table 1.7 : Compliance with environmental flow recommendations under unimpacted (natural), historical (gauged) and climate change scenarios and for wet, average and dry climate type years for the Yarra River environmental flow Reach 5 noting that environmental flow recommendations differ between wet, average and dry climate years.

It should be noted that the compliance and shortfalls for the Autumn High (April/May) environmental flow recommendations in both reaches (shown in Table 1.6 and Table 1.7) suggests that the recommendation is not being achieved at all, despite historically being targeted between 2010 to 2016. This is because partial achievement of a flow recommendation for a single event is not considered compliant if the duration is not fully

met (in the case of the Autumn High, 7 full days above 560 ML/day in Reach 2 and 1300 ML/day in Reach 5 is required).

This is demonstrated with reference to historical (gauged) flows in Reach 5 for the following years in the Autumn (April/May) period:

- 2011/12 Flows above 1300 ML/day for 6 days at the end of May, event continues post May above threshold but is not included in the 7 day duration.
- · 2012/13 Flows above 1300 ML/day for 1 day.
- 2013/14 Flows above 1300 ML/day for 6 days and 1 day below (so non-event based on how event is defined in compliance assessment – less than 7 day duration above 1300 ML/day)
- · 2014/15 Flows above 1300 ML/day for 4 days.
- · 2015/16 No event.

Partial achievement of flow recommendation and hence partial compliance for an event is not calculated, where the flow component has only 1 event (as is the case with the Autumn high flow). In a particular year, it either meets the full 7 days or not, so the shortfalls are consistently the same if it is 1 day short or 5 days short of the recommended 7 day duration. This is different to other flow components that have partial compliance because they have more than 1 event as part of their recommendations. If the tool was set up to assess partial compliance for the Autumn High flow, then the assessment of compliance would be greater and shortfall volumes lower for this recommended flow component.

Shortfall Assessment

Shortfalls were calculated as the volume required to meet environmental flow volume requirements. Compliance and shortfalls for Reach 2 and Reach 5 are presented as box-whisker plots to illustrate the distribution of event compliance and shortfalls. Figure 1.4 illustrates the components of a box-whisker plot, where the box represents the distribution of values between 25th (Q2) and 75th (Q3) percentiles, with whiskers representing the 10th and 90th percentiles as lower and upper bounds.

Figure 1.4 : Box-Whisker plot interpretation.

An assessment of the magnitude of the annual shortfall (the volume of water required to deliver all environmental flow recommendations assuming the river was flowing at the minimum passing flow), was also undertaken. Shortfall volumes were calculated for current conditions and climate change 2040 and 2065 scenarios for low flow recommendations, and separately for fresh and high flow recommendations for Reaches 2 (see Figure 1.5) and 5 (see Figure 1.6). Shortfall volumes were not determined for bankfull or overbank flow recommendations because the Environmental Entitlement (EE) is not used to deliver these types of flow events. The shortfalls are presented as box plots that show the percentage of time (in years) that a particular

shortfall volume is required for wet, average and dry climate year under historical and various climate change scenarios.

Figure 1.5 : Shortfall volumes required to achieve compliance with summer and winter low flow recommendations and fresh and high flow recommendations in the Yarra River (Reach 2) in wet, average and dry climate years under current and medium impact climate change flow scenarios. The centre of the box marks the median annual shortfall volume, margins of the box shows the 25th and 75th percentile shortfall volume ranges, the whiskers mark the 5th and 90th percentile shortfall volume ranges. The dotted line indicates the volume of the existing Environmental Entitlement (17 GL).

The analysis for Reach 2 and 5 shows that for summer and winter low flows under current conditions there is very little shortfall in delivery of low flow recommendations. This is because low flows are currently delivered as a passing flow requirement. However, during very dry years, and with climate change, there is a decrease in compliance with low flow recommendations and an increase in the volume of water that would need to be

JACOBS

Final Report

released from storages in order to meet low flow recommendations. Under the long term climate change scenario (CC Medium 2065), a significant volume of water would need to be released just to meet low flow recommendations, particularly in a dry climate year. The shortfall volume required to meet low flow recommendations would use the majority of the annual entitlement presently held in the EE (17 GL/annum) and in those years there would be not enough spare entitlement to deliver any fresh or high flows.

Figure 1.6 Shortfall volumes required to achieve compliance with summer and winter low flow recommendations and fresh and high flow recommendations in the Yarra River (Reach 5) in wet, average and dry climate years under current and medium impact climate change flow scenarios. The centre of the box marks the median annual shortfall volume, margins of the box shows the 25th and 75th percentile shortfall volume ranges, the whiskers mark the 5th and 90th percentile shortfall volume ranges. The dotted line indicates the volume of the existing Environmental Entitlement (17 GL).

JACOBS

A similar trend is found for the fresh and high flow events, with shortfall volumes increasing in average years versus wet years for Reach 2. A significant reduction in shortfalls in dry years is shown, this is due to the different recommendations for average/wet years versus dry. This analysis also shows that under all conditions, the existing EE is sufficient to deliver all fresh and high flow recommendations in all years for Reach 2. On the other hand, the assessment for Reach 5 shows that under all conditions in the majority of years there would not be enough EE to meet fresh and high flow events in wet/average years. This is because of the shortfall volumes for spring high flow events are significantly larger (i.e. 30,000 GL) than the remainder of recommendations thereby increasing the total annual shortfall volume. However, the EE would be enough to meet compliance in dry years, given the fact that the dry flow recommendations require less volume. It should be noted that the compliance and shortfall assessment in this section treats the reaches independently, that is, it does not consider the connectivity between the flow events across the reaches. This results in apparent differences in compliance and shortfall volumes when comparing reaches.

Environmental Entitlement Assessment

The average compliance and shortfall pre and post the introduction of the EE and delivery of environmental flows in 2010, in the Reaches 2 and 5 for each year type were analysed and are presented in Table 1.8. The EE under the historical scenario suggests that there has been an improvement in compliance and reductions in shortfalls in both reaches. This is particularly evident in dry and average years, where total shortfall across all recommendations reduces by 12 GL in Reach 2 with the active management of the EE. Further downstream in Reach 5, shortfalls have reduced by approximately 8.8 and 1.3 GL for dry and average years, respectively.

Table 1.8 : Average compliance with environmental flow recommendations and associated shortfall under historical (gauged) and climate change scenarios and for wet, average and dry climate type years for the Yarra River environmental flow Reach 2 and 5 noting that environmental flow recommendations differ between wet, average and dry climate years.

Historical									(CC 2040	Medium	n (-11.0 S	%)			(C 2065	Medium	n (-16.49	%)			
		Climate Type	summer / Autumn Low Flow	summer / Autumn Fresh	Autumn High	Winter / Spring Low Flow	Winter/Spring Fresh	spring High	Winter / Spring Bankfull / Overbank	summer / Autumn Low Flow	summer / Autumn Fresh	Autumn High	Winter / Spring Low Flow	Winter/Spring Fresh	spring High	Winter / Spring Bankfull / Overbank	summer / Autumn Low Flow	summer / Autumn Fresh	Autumn High	Winter / Spring Low Flow	Winter / Spring Fresh	spring High	Winter / Spring Bankfull / Overbank
		w	229	445	2,569	2,428	600	2,450	1,426	331	635	3,162	3,480	600	2,450	1,712	404	699	3,162	4,150	675	2,800	1,712
	Pre 2010	Α	277	964	3,360	7,641	911	4,250	3,118	420	1,003	3,360	9,767	1,093	4,250	3,464	525	1,041	3,360	10,982	1,184	4,675	4,157
Dearb 2		D	22	1,188		11,438	2,364	NA	4,653	97	1,260	3,360	13,622	2,463	NA	4,985	176	1,296	3,360	14,786	2,561	NA	4,985
Reach 2		×	0	0		320	1,275	5,950	4,850	0	0		1,187	1,275	5,950	4,850	0	0		1,920	1,275	5,950	4,850
	Post 2010	Α	30	540	3,360	670	0	1,983	1,617	117	720	3,360	1,585	425	1,983	3,233	222	720	3,360	2,222	425	1,983	3,233
		D	0	360	2,240	2,253	985	NA	4,985	0	360	2,240	3,759	1,478	NA	4,985	8	360	2,240	4,697	985	NA	4,985
		W	1,001	647	4,982	5	391	12,394	0	1,20	3 712	5,435	10	1,174	14,165	274	1,343	841	5,888	22	1,565	14,165	547
	Pre 2010	Α	954	1,179	7,700	1,343	1,900	23,650	996	1,38	7 1,336	7,700	1,973	2,375	23,650	996	1,714	1,571	7,700	2,382	2,375	23,650	996
Reach 5		D	755	1,540	7,700	5,097	6,650	NA	NA	1,32	7 1,980	7,700	7,559	6,650	NA	NA	1,723	2,127	7,700	9,022	6,650	NA	NA
		W	0	0	0	0	0	30,100	0	0	0	0	0	0	30,100	4,650	0	0	0	0	0		4,650
Post 2010	Α	197	1,100	7,700	1,345	4,433	20,067	1,550	657	1,833	7,700	2,063	4,433	30,100	1,550	1,097	2,200	7,700	2,505	4,433	30,100	1,550	
		D	1	733	7,700	95	4,433	NA	NA	34	1,100	7,700	488	4,433	NA	NA	92	1,467	7,700	834	4,433	NA	NA

Mostly complies	Less than	95%		of maximum possible shortfalls / year
Frequently complies	Between	75% &	95%	of maximum possible shortfalls / year
Often complies	Between	50% &	75%	of maximum possible shortfalls / year
Occasionally complies	Between	25% &	50%	of maximum possible shortfalls / year
Rarely complies	Between	5% &	25%	of maximum possible shortfalls / year
Never complies	Between	0% &	5%	of maximum possible shortfalls / year

Under the short and long term climate change outlooks, there is a reduction in compliance and increased shortfalls for all years compared with Historical. As was the case for the historical scenario, shortfalls are reduced post 2010 indicating that the active management of the EE under a climate change scenario would also be of benefit in management of the river. Additionally, it can be seen that a reduced shortfall does not necessarily equate to an increased compliance. This is because of how compliance has been defined (e.g. frequently occurs ranges between 75-95%). It should be noted, the years since the EE was enacted tend to correspond to dry climate years when compliance is not as good, so the benefit of the EE is much more evident. This suggests and demonstrates that the intended use of the EE, that is, to protect flows during dry years, is being achieved.

It should be noted, compliance and shortfalls for the Autumn High environmental flow recommendations under Historical conditions with the introduction of the EE, suggests that there has been minimal improvement despite being targeted. This is because partial compliance using the compliance tool for a single event is not considered met if the duration is not entirely achieved. In reality, compliance would be greater and shortfall volumes lower for the Autumn High, further supporting the importance of the EE.

A summary table comparing the average shortfalls for dry, average and wet years to the environmental entitlement for different climate change projection is given in Table 1.9. It can be seen for Reach 2, that under the historical scenario the current EE is enough to meet all shortfalls, with 2,440 ML remaining in the EE. However, this volume begins to reduce under climate change, this is particularly noticeable for the 2065 outlook, where an additional volume of 1,232 ML is required. Reach 5 shortfall analysis, on the other hand, suggests that there is not enough EE to meet environmental flow recommendation currently, with the historical scenario needing an additional 14,627 ML. This is because the EE is not enough to meet the spring high flow event environmental flow recommendation. The net water required to meet the environmental flow recommendations increases to 19,604 ML under a longer term climate change outlook.

Climate Scenario	Historical Baseline	2040 Median Climate	2065 Median Climate
Reach	Reach 2: Armstrong Cre	ek to Millgrove	
Summer - Autumn Low	156	253	334
Summer - Autumn High, Fresh	3,773	4,061	4,102
Winter - Spring, Low	6,210	7,885	8,856
Winter - Spring High, Fresh	4,421	4,551	4,940
Total Shortfall	-14,560	-16,750	-18,232
Environmental Water	17,000	17,000	17,000
Net Water	2,440	250	-1,232
Reach	Reach 5: Top of Yering	Gorge to Mullum Mullum (Creek
Summer - Autumn Low	798	1,169	1,441
Summer - Autumn High, Fresh	7,762	8,154	8,485
Winter - Spring, Low	1,870	2,793	3,360
Winter - Spring High, Fresh	21,197	23,295	23,418
Total Shortfall	-31,627	-35,411	-36,704
Environmental Water	17,000	17,000	17,000
Net Water	-14,627	-18,411	-19,704

Table 1.9 : Comparing average shortfalls to available environmental entitlement for dry, average and wet years for each environmental flow component and climate change projection for Reach 2 and 5.

1.3.3 Assessment using stochastically generated climate change scenarios

Four climate scenarios were stochastically generated as part of the ARC Linkage Project at the University of Melbourne. Scenarios include an (i) unimpacted, (ii) current, (iii) low climate change outlook, and (iv) high climate change outlook. The four generated scenarios were derived using a stochastic data generation method in order to characterize *natural* variability in a consistent manner. Considering the spatial variation of rainfall across the catchment, a multi-site stochastic weather generator, the Multi-site weather Generator of École de Technologie Supérieure (MulGETS; Chen et al. 2014), was used to generate daily rainfall at main sub-catchments. MulGETS generates spatially coherent climate information at multiple sites by driving the individual single-site models with temporally independent but spatially correlated random numbers.

Changes in future climate was estimated by comparing the simulations of a future period 2055-2074 (centered on 2065) to a reference period 1986-2005. The emission scenario adopted is Representative Concentration Pathways 8.5, which is a climate projection with the highest greenhouse gas emission. Two GCMs have been selected, with ACCESS1.0 representing a relatively high estimate of this climate change scenario and MIROC5 representing a relatively low estimate. Climate simulations of the two GCMs are available from the Coupled Model Intercomparison Project Phase 5 (CMIP5).

Once two hundred years of daily rainfall was developed for each scenario, a rainfall runoff model, SIMHYD was used to generate two hundred years of streamflow data at Reach 2 and 5. Bias correction was then applied to remove any bias originating from the stochastic weather generator. It should be noted that for the remainder of this section, 200 years of data will be defined as 200 replicates.

Figure 1.7 and Figure 1.8 show the daily streamflows for all four scenarios, with the middle line representing the median of the 200 replicates and the shaded area represents the range between the 5th and 95th percentile. In both figures, it can be seen that under the low and high climate change (plots c) and d), respectively) the spread and median streamflow is reduced compared with current (plot a). Alternatively, the unimpacted scenario has larger median streamflows and a wider spread (i.e. more variation in predicted stream flow and overall higher flows).

Figure 1.7 : Daily hydrograph at Reach 2 for a) Current, b) unimpacted, c) low climate change and d) high climate change scenarios (NB. Middle lines represent the median of 200 replicates and shaded area represents the range between the 5th and 95th percentile of 200 replicates).

Figure 1.8 : Daily hydrograph at Reach 2 for a) Current, b) unimpacted, c) low climate change and d) high climate change scenarios (NB. Middle lines represent the median of 200 replicates and shaded area represents the range between the 5th and 95th percentile of 200 replicates).

Final Report

Compliance, Shortfall and Environmental Entitlement Assessment

Reach 2 and 5 annual compliance boxplots using the 200 replicates, for low flows, and fresh and high flows are presented in Figure 1.9. In general, it can be seen that compliance reduces as the impact of climate change increases. This is specifically noticeable in Reach 2 (see plots a) and c)). Alternatively, Reach 5 low flows are generally 100% compliant for all scenarios, while the fresh and high flows reduce in compliance as the climate change outlooks increase from low to high. Under the unimpacted scenario, low flows are generally compliant however, fresh and high flows compliance is on average 70%. These results are consistent with distribution of streamflows shown in Figure 1.8, where the reduction in medium flows from unimpacted to the climate change outlooks is noticeable. As was the case in Section 1.3.2, compliance for fresh and high flows was more varied than low flows.

Figure 1.9 : Boxplots of low and high.

The distribution of annual shortfall for lows flows, and fresh and high flows events in Reach 2 were also analysed and are presented in Figure 1.10. It can be seen for both flow recommendations that annual shortfall volumes increase, from the unimpacted scenario to the climate change projections. Reach 5 annual shortfall distribution for low flows (plot a), and fresh and high flows (plot b) are presented in Figure 1.11. Unlike Reach 2, shortfall volumes for low flows are lower, since there are further contributing inflows downstream increasing streamflows to meet the low flow recommendations. On the other hand, shortfall volumes vary significantly for fresh and high flows recommendations, which is consistent with finding in

Final Report

Section 1.3.2. However, the results suggest that using this method to assess shortfalls that the 17GL EE is enough to meet both low and fresh and high flows recommendations even when climate change is considered. Further discussion on the differences in using the climate change guidelines to scale runoff and the stochastically generated approach described in this section is presented in Section 1.3.4.

Figure 1.10 : Reach 2 shortfall for low flows (plot a) and fresh and high flows (plot b) for unimpacted, current, low and high climate change scenarios

JACOBS

Figure 1.11 : Reach 5 shortfall for low flows (plot a) and fresh and high flows (plot b) for unimpacted, current, low and high climate change scenarios

1.3.4 Summary and conclusions

The analysis using the DELWP Climate Change guidelines (see Section 1.3.2), uses scaling factors to reduce streamflow to account for climate change outlooks. This assesses the worst case climate change scenario, indicating that it will become increasingly difficult to meet low flow recommendations and to maintain the current level of compliance with fresh and high flow recommendations with the existing volume of EE. If it is assumed that the EE is not required to deliver low flow recommendations (i.e. passing flow requirements), then an increase in the EE from 17 GL to 40-50 GL/annum is required to meet all flow recommendations. In Section 1.3.3, a sophisticated approach that accounts for not only reductions in streamflow but also the changes in variability under climate change is investigated. Unlike the DELWP climate change guidelines, the shortfalls are not as large, indicating that the EE may be sufficient to meet the majority of flow recommendations in most years.

The apparent differences in shortfall results, for example when comparing the current scenario, can be attributed to the different methods and data used in each assessment. The former (i.e. DELWP guidelines) used gauged historical streamflow data, whereas the sophisticated approach stochastically constructed modelled streamflow using a weather generator and rainfall-runoff model. By modelling the streamflow, errors could have been introduced thereby underestimating flows at Reach 5. A direct comparison of the two methods can thus not be fully undertaken. In addition, the sophisticated method attempts realistic representative changes in natural variability and rainfall frequencies under climate change. There still much research to be undertaken in this area. As methods, knowledge and data improve overtime, it is likely that these probabilistic streamflow estimates, and in turn compliance and shortfall estimates, will be more accurate in the future.

Overall, the climate change assessments investigation on compliance and shortfall of environmental flow recommendations in the Yarra River showcases different outcomes that could occur in the future depending on the method used. It should be noted, that there still remains a great amount of uncertainty associated with future climate change outlooks and research in this area is continuing. Table 1.10 shows the advantages and disadvantages of each approach. Because of this, when planning for climate change it is recommended to take a conservative and widely accepted approach, as proposed by the DELWP climate change guidelines and assume that current EE will not be able to meet all recommendations. However, as methods, tools and assumptions are refined and improved when new science becomes available, the amount of additional water that needs to be obtained to meet shortfalls will most likely need to be revisited. Improvements could include ensuring a realistic representation of current using the stochastically generated streamflow, or a method to assess meeting dry and average/wet recommendations using the stochastic approach.

	DELWP Climate Change Guidelines Approach	Stochastically generated climate change approach
Advantages	 Simple Wide accepted Conservative Realistic representation of current compliance because it is based on the measured historical flow 	 Probability of the likely streamflows under different climate change scenarios is estimated. This can be used to assess climate change risk more accurately. Incorporates changes in variability and rainfall extremes under climate change
Disadvantages	 Only uses one-time series for each climate change projection Does not taking ton account natural variability or increases in rainfall extremes under climate change 	 Dry, average and wet year compliance difficult to assess separately Synthetically generated current streamflow, hence does not present current compliance well. Further research required to refine approach

Table 1.10 : Summary of advantages and disadvantages of each climate change approach

In future, developing a standardised method to assess climate change impacts on the environmental flow compliance, shortfalls and ultimately ecological condition that align with techniques/methods used in water resource planning and management is needed. One way forward could be to investigate the impact of scaling rainfall, as per the DELWP guidelines, and using a rainfall-runoff model to generate streamflow. This is currently being conducted as part of a separate Melbourne Water project. Being able to develop standards that aid climate change assessments for environmental flow management, but also water supply operations and other water sectors (e.g. floodplain management), would promote transparent and a consistent approach that support robust and informed long term decision making processes.

1.4 Guidance on prioritisation of watering actions

1.4.1 Review of prioritisation of environmental flow objectives under varying climatic scenarios

Environmental water delivery is monitored and adaptively managed as conditions unfold throughout the year and three management scenarios have been developed to cover a range of possible climatic conditions for the system. The scenarios and recommended watering actions associated with them are based on historic streamflow data for Reach 2 and Reach 5. Watering actions are prioritised against three scenarios:

- 1) Protect / Maintain This scenario applies during dry conditions
- 2) Recover This scenario applies for average conditions
- 3) Enhance This scenario applies during wet conditions

It is recommended that there is a slight change in the water year classification for the protect/maintain (dry), recover (average) and enhance (wet) watering actions so there is consistency with the split in climate years

used for the development of flow recommendations. The environmental flow recommendations have been developed using a lower third (dry), middle third (average) and highest third (wet) split. It is proposed that this split in water years is used to define the three watering scenarios.

Table 1.11 and Table 1.12 provides an overview of recommended priority watering actions and environmental objectives for each water management scenario for Reach 2 and 5. These tables also include revised figures of the estimated water volume required to achieve environmental objectives and expected water availability (carryover and allocation) for each water management scenario. It should be noted that the estimated water volumes are derived from the shortfall analysis, but this does not include additional volume that may be required to operationally deliver the flow recommendations, meaning the overall water cost to deliver particular events is likely to be higher. Carryover is calculated as 17 GL minus the estimated volume of water required to achieve the environmental objectives.

In a Protect / Maintain (Dry) scenario, the highest priority is the delivery of the Summer / Autumn low flow and freshes followed by the Winter / Spring low flow and freshes to protect priority species and critical refuge habitats.

The delivery of an Autumn high to trigger downstream spawning migration of Australian Grayling is also recommended. It is preferred that the Autumn high is delivered every year, if possible. If there are more than two years without an Autumn high, it is recommended that this spawning event is prioritised in the third year. These events should be prioritised over a Winter / Spring freshes for recruitment, as without spawning there will not be any recruits and this is particularly important for relatively short-lived species such as grayling. If the Autumn high event does occur, the next priority is Winter/Spring freshes.

This prioritisation of flows as outlined above and documented in Table 1.11 and Table 1.12, is also useful for thinking through decisions regarding carryover. For example, for Reach 2 in a dry year 13,109 ML is required to deliver recommended low flows and freshes, potentially leaving 3,891 ML as carryover for the following year (Table 1.11). Should an Autumn high flow not occur, and the forecast is for dry conditions to continue it is recommended that delivery of this high flow is prioritised in the following year using the carryover from the previous dry year.

Table 1.11 : Delivery of priority watering actions for Reach 2 under a range of watering scenarios. Estimated volume of water required to achieve objectives is based on the shortfall analysis - average total shortfalls for dry/average/wet year (this is not the same as the volume of water that is required to operationally deliver the flow recommendations). Carryover is 17 GL minus estimated water volume required to achieve environmental objectives.

	Protect / Maintain (Dr	у)	Recover (Average)		Enhance (Wet)				
	(Driest third of rainfa	ll years)	(Middle third of rainfall	years)	(Wettest third of rainfall ye	ears)			
Expected water	Carryover	Allocation	Carryover	Allocation	Carryover	Allocation			
availability	3,891 ML	17,000 ML	5,536 ML	17,000 ML	10,989 ML	17,000 ML			
Watering actions to be delivered	 Summer / Autumn Ic access to and quality Summer / Autumn fr and vegetation (3 ev days at peak) Winter / Spring low f to and quality of hab Winter / Spring fresh and provide opportur events, June-August peak) 	w flow to maintain y of habitat (80 ML/day) eshes to maintain habitat rents, 350 ML/day, 2 low to maintain access itat (80-350 ML/day) nes to maintain habitats nities for fish migration (2 t, 700 ML/day, 3 days at	 Summer / Autumn Iow to and quality of habita Summer / Autumn fres and vegetation (3 even at peak) Autumn high to trigger migration of Australian Apr/May, 560 ML/day, event required 2 in 3 y Winter / Spring low flov and quality of habitat (2 Winter / Spring freshes and provide opportunit events, June-August, 7 peak) 	flow to maintain access t (80 ML/day) hes to maintain habitat tts, 350 ML/day, 2 days downstream spawning Grayling (1 event, 7 days at peak) - 1 ears, priority w to maintain access to 200-350 ML/day) to maintain habitats ies for fish migration (2 700 ML/day, 3 days at	 Summer / Autumn low flow to maintain access to and quality of habitat (80 ML/day) Summer / Autumn freshes to maintain habitat and vegetation (3 events, 350 ML/day, 2 days at peak) Autumn high to trigger downstream spawning migration of Australian Grayling (1 event, Apr/May, 560 ML/day, 7 days at peak) - 1 event required 2 in 3 years, priority Winter / Spring low flow to maintain access to and quality of habitat (200-350 ML/day) Winter / Spring freshes to maintain habitats and provide opportunities for fish migration (2 events, June-August, 700 ML/day, 3 days at peak) 				
Environmental objectives	 Protect priority speci habitat Prevent localised exicatastrophic events, Protect water quality priority species and 	ies and critical refuge tinctions and such as fish kills to prevent impacts on habitats	 Improve access to suit fauna Maintain habitat conne Increase zone of flood drowning out encroach Provide flows for spaw priority fish species 	able habitat for priority ctivity tolerant vegetation, by ing terrestrial species ning and migration of	 Improve access to suitable habitat for priority fauna Maintain habitat connectivity Increase zone of flood tolerant vegetation, by drowning out encroaching terrestrial species Provide flows for spawning and migration of priority fish species Maintain channel geomorphology 				
Estimated water	13,109 ML		11,644 ML		6,011 ML				
volume required to									
Additional watering actions that may be delivered if more environmental water was allocated	Autumn high to trigg migration of Australia Apr/May, 560 ML/da event required 2 in 3	er downstream spawning an Grayling (1 event, y, 7 days at peak) - 1 3 years, priority	 Winter / Spring high flo disturbance to favour fl (1 event, Sep, 700 ML/ 	w to provide prolonged ood tolerant vegetation /day, 14 days at peak)	 Winter / Spring high flow to provide prolonged disturbance to favour flood tolerant vegetation (1 event, Sep, 700 ML/day, 14 days at peak) Bankfull and overbank may occur naturally but will not be provided. 				

Table 1.12 : Delivery of priority watering actions for Reach 5 under a range of watering scenarios. Estimated volume of water required to achieve objectives is based on the shortfall analysis - average total shortfalls for dry/average/wet year (this is not the same as the volume of water that is required to operationally deliver the flow recommendations). Carryover is 17 GL minus estimated water volume required to achieve environmental objectives.

	Protect / Maintain (Dry) (Driest third of rainfall years)		Recover (Average) (Middle third of rainfall years)		Enhance (Wet) (Wettest third of rainfall years)	
Expected water	Carryover	Allocation	Carryover	Allocation	Carryover	Allocation
availability	4,421 ML	17,000 ML	3,624 ML	17,000 ML	10,364 ML	17,000 ML
Watering actions to be delivered	 Summer / Autumn low flow to maintain access to and quality of habitat (200 ML/day) Summer / Autumn freshes to maintain habitat and vegetation (3 events, 750 ML/day, 2 days at peak) Winter / Spring low flow to maintain access to and quality of habitat (350-600 ML/day) Winter / Spring freshes to maintain habitats and provide opportunities for fish migration and maintain vegetation (2 events: 1300 ML/day, June/July, 7 days at peak; 2500 ML/day, June-Sep, 2 days at peak) 		 Summer / Autumn low flow to maintain access to and quality of habitat (200 ML/day) Summer / Autumn freshes to maintain habitat and vegetation (3 events, 750 ML/day, 2 days at peak) Autumn high to trigger downstream spawning migration of Australian Grayling (1 event, Apr/May, 1300 ML/day, 7 days at peak) – 1 event required 2 in 3 years, priority Winter / Spring low flow to maintain access to and quality of habitat (350-750 ML/day) Winter / Spring freshes to maintain habitats and provide opportunities for fish migration and maintain vegetation (2 events: 1300 ML/day, June/July, 7 days at peak) 		 Summer / Autumn low flow to maintain access to and quality of habitat (200 ML/day) Summer / Autumn freshes to maintain habitat and vegetation (3 events, 750 ML/day, 2 days at peak) Autumn high to trigger downstream spawning migration of Australian Grayling (1 event, Apr/May, 1300 ML/day, 7 days at peak) – 1 event required 2 in 3 years, priority Winter / Spring low flow to maintain access to and quality of habitat (350-750 ML/day) Winter / Spring freshes to maintain habitats and provide opportunities for fish migration and maintain vegetation (2 events: 1300 ML/day, June/July, 7 days at peak; 2500 ML/day, June-Sep, 2 days at peak) 	
Environmental objectives	 Protect priority species and critical refuge habitat Prevent localised extinctions and catastrophic events, such as fish kills Protect water quality to prevent impacts on priority species and habitats 		 Improve access to suitable habitat for priority fauna Maintain habitat connectivity Increase zone of flood tolerant vegetation, by drowning out encroaching terrestrial species Provide flows for spawning and migration of priority fish species 		 Improve access to suitable habitat for priority fauna Maintain habitat connectivity Increase zone of flood tolerant vegetation, by drowning out encroaching terrestrial species Provide flows for spawning and migration of priority fish species Maintain channel geomorphology 	
Estimated water volume required to achieve objectives	12,579 ML		13,376 ML		6,636 ML	
Additional watering actions that may be delivered if more environmental water was allocated	 Autumn high to trigger downstream spawning migration of Australian Grayling (1 event, Apr/May, 1300 ML/day, 7 days at peak) – 1 event required 2 in 3 years, priority 		 Winter / Spring high flow to provide prolonged disturbance to favour flood tolerant vegetation (1 event, Sep-Oct, 2500 ML/day, 14 days at peak) 		 Winter / Spring high flow to provide prolonged disturbance to favour flood tolerant vegetation (1 event, Sep-Oct, 2500 ML/day, 14 days at peak) Bankfull and overbank may occur naturally but will not be provided. 	

1.4.2 Additional considerations

The Victorian Environmental Water Holder (VEWH) also provided a number of comments on aspects they thought should be considered as part of this FLOWS Review. A response to each of these comments is included below.

• The broader context in which the individual flow components sit (e.g. if you can't deliver the full suite of recommended flow components because of constraints or there isn't the water available, what does this mean in terms of achieving environmental outcomes?)

The prioritisation of watering actions outlined in Section 1.4.1 provides guidance as to recommended watering actions in response to changes in water availability. The flow recommendations have been broken down into those that can be managed (blue), from those that are expected to occur naturally and do not require active delivery (green). It is recognised that the entire flow regime cannot be delivered, but it is possible to deliver specific flow components to achieve targeted outcomes. Bankfull and overbank flows are not actively delivered, however it is possible through works and measures to deliver water to priority billabongs.

• What is achievable from the flows that can be delivered within the physical and system constraints, if not the full suite of recommendations?

In the revised flow recommendations tables, the flow components have been colour coded to highlight those that can be delivered within the physical and system constraints - flows that are managed (blue) from those that are expected naturally and hence do not require active delivery (green).

 How critical is delivery of environmental water to the overall health of the system (what other complimentary actions are needed/being undertaken and how do they interact with flow? Is flow the main issue or are there other issues within the system that are preventing the achievement of environmental outcomes from delivery of environmental water)

Delivery of environmental flows is critical to achievement of environmental objectives, however, this is just one aspect of what is needed to secure the health of flow-dependent values in the Yarra River. In addition to delivering environmental flows, a range of complementary actions are needed to assist in achieving the objectives outlined in this FLOWS Review and the Yarra River Environmental Management Plan (EWMP). In some cases, failure to deliver complementary actions will limit the benefits of delivering environmental flows. Complementary actions include riparian vegetation rehabilitation, addressing catchment sources of sediment pollution, and undertaking pest plant and animal eradication/control programs.

• A focus on longer term planning rather than just the standard dry/average/wet scenario planning, what is the 5-10 year plan for the system?

The Yarra River Environmental Management Plan (EWMP) provides the overarching strategy for the management of environmental water and protection of flow-dependent values in the Yarra River for the next five to ten years. Melbourne Water take into account the antecedent climate conditions, the current condition of key values, and the amount of water held in storage to prioritise releases. These decisions are made by comparing current conditions and historic streamflow data for Reach 2 and Reach 5. Watering actions are prioritised against three scenarios, protect/maintain, recover and enhance as documented in Section 1.4.1.

Also discussed at the project inception meeting with Melbourne Water was overbank flows and their importance for the ecological health of the Yarra River.

 If you do not have overbank flows and their assumed positive benefits (i.e. return of carbon to the river), does this then impact on ability to achieve ecological outcomes anticipated with the delivery of other flow recommendations?

Further research and monitoring is required to demonstrate that concepts elucidated elsewhere that overbank flows and associated return of organics to the channel environment are critical for the rivers ecosystems, is also applicable to the Yarra River. Melbourne Water are constrained in their ability to water floodplain areas as the delivery of bankfull or overbank flow events that allow water to run onto the floodplain and fill wetlands poses a potential risk of flooding private land in some part of the

catchment. However, there may be opportunities to reconnect parts of the floodplain, for example the removal/rearrangement of levees improve connections to billabongs in some locations along the Yarra floodplain where flooding impacts can be effectively managed. It is recommended that Melbourne Water assess the feasibility of landscape scale floodplain re-engagement, or inundation of billabong complexes (rather than individual isolated billabongs as is currently occurring). The first step in such an investigation would be 2D hydraulic modelling of low overbank flow inundation to identify areas where re-engagement or complex billabong engagement could occur (Figure 1.12).

Figure 1.12 : Yarra River and floodplain in the Tarrawarra area. An opportunity exists at this site to improve flow connections to billabongs through the remodeling of inlet areas and removal/rearrangement of levees to increase opportunities for floodplain and complex billabong inundation.

1.5 Flow management tools

Melbourne Water currently use a number of documents and spreadsheets to assist in decision making about the managed use of the Environmental Entitlement and delivery of environmental flows in the Yarra River under various climatic scenarios. Existing documents and spreadsheets have been developed with reference to earlier objectives and flow recommendations.

In light of the revisions to environmental flow objectives and recommendations, Melbourne Water has identified the need to develop a robust scenario planning management framework to help in the management of the Environmental Entitlement and delivery of environmental flows. The framework is to consider: how watering actions should shift in different climatic scenarios (drought, dry, average and wet), the water requirements for each scenario and when carryover decisions should be made.

There is a wealth of existing information, data and tools available for the Yarra system that could be used in the development of the tool. An important advance is the recently completed ARC Linkage Project ("Seasonal Environmental Watering Decisions Support Tool") at Melbourne University, which Melbourne Water was a partner. It offers data, information and sophisticated models for the Yarra system that could inform or be incorporated in the scenario planning and flow management framework.

- Informative Updated analysis of volumes to meet flow recommendations, compliance and short falls for different climatic scenarios (drought, dry, average and wet).
- Analytical Provide summary reports on achievement of environmental flows against that documented in seasonal watering proposal (i.e. achievement of flow recommendations, volume of water used, amount remaining in environmental entitlement).
- Predictive Forecasts of future streamflows to assist with ongoing management of environmental entitlement and decisions regarding carryover, timing, magnitude and duration of environmental flow releases.

The benefits of the development and documentation of such flow management tools are that they can improve the ability to learn from management decisions and they support dialogue between stakeholders. More importantly, it also allows for clear and transparent documentation of the current state of knowledge and would allow for it to be more easily shared, provide a record of management actions and facilitate ongoing environmental management and policy making.

1.6 Other recommendations

1.6.1 Monitoring and investigations

The following recommendations are made to assist in monitoring the environmental condition of the waterways and ecological responses to flows:

- Monitoring of channel form in Reach 1 to assess changes in the recommended flow regime and cumulative impact of high flow releases on the physical form and availability of habitat within the channel. This would also include monitoring of the channel in between high flow releases, to assess the rate of recovery between events (i.e. is there ongoing accumulation of sediment in pool/riffle areas, vegetation encroachment).
- Further monitoring of fish movements with flows, in particular to determine the location and extent of Australian Grayling spawning grounds in the lower Yarra River; linkages between the upstream migration of diadromous fishes and flow; and the timing and spatial extent of upstream migrations of adult lamprey and potential spawning sites.
- Spawning and recruitment surveys of Macquarie Perch to develop a better understanding of factors influencing spawning and recruitment (this is currently happening).
- Survey the occurrence of in-stream microbial biofilms and submerged vascular plants in Reaches 1 and 2, and the effectiveness of the recommended suite of flows in maintaining these poorly studied vegetation types in the upper Yarra.
- Monitoring the effectiveness of the recommended suite of flows (e.g. managed low flow, freshes and high flows; episodic bankfull and overbank events) in limiting encroachment of undesirable riparian or terrestrial vegetation into stream channel (all Reaches).
- Monitoring the effectiveness of the recommended suite of flows is providing the hydrological complexity required to maintain the critical in-stream and riparian vegetation characteristics, including vegetation zonation (all Reaches).
- Assess the options for improving lateral connectivity between river and floodplain/billabong habitats in Reaches 3, 4, 5 and 6
- The critical components of the flow regime and the mechanisms by which they impact platypuses are poorly understood. Further research is required to investigate the important flow components for platypuses and, critically, the effect on macroinvertebrate distribution and abundance and habitat availability (most flow recommendations for platypuses are directed towards supporting macroinvertebrate communities and maintaining habitat availability and connectivity).

JACOB

The Millennium Drought clearly had a significant detrimental impact on platypus populations throughout the greater Melbourne region. Identifying drought refuge areas for platypuses will help inform minimum flows required to sustain critical areas during dry periods and direct complementary management actions to preserve these areas.

1.6.2 Complementary management actions

Environmental flows alone are often not sufficient to achieve desirable ecological outcomes other actions are often required in order for objectives to be achieved. A range of complementary management actions are recommended in the Yarra EWMP and are repeated here:

- Remove willows and other invasive woody weeds from the waterway (while preventing bank erosion and maintaining adequate protective cover for platypus and waterbirds from predators).
- Reduce the adverse impacts of stock access along water courses by working with landowners to fence off waterways and creating off-stream watering points.
- Retain and potentially augment the amount of instream woody habitat (logs and large branches) present in stream and river channels and wetlands.
- Undertake community education programs to address illegal fishing nets use, and implement an education and involvement program with recreational fishing groups to ensure native fish are released but introduced fish are not released back in to the river.
- Through strategies such as Water Sensitive Urban Design (WSUD), control and treat urban stormwater and agricultural runoff as needed before it enters natural water courses to reduce litter and concentrations of sediment and chemical pollutants.
- Reduce the impact of introduced predators by implementing control programs for foxes/feral cats and by restoring/maintaining a dense band of plant cover along the edges of waterways to discourage easy access by foxes, dogs and cats, especially in places where water is shallow (seasonally or throughout the year). Undertake community awareness programs to raise dog and cat owners' understanding of the risks these pets can pose to platypus and waterbirds.

2. References

- Bethge, P., Munks, S. A., Otley, H., & Nicol, S. (2003). Diving behaviour, dive cycles and aerobic dive limit in the platypus *Ornithorhynchus anatinus*. Comparative Biochemistry and Physiology Part A, 136, 799-809.
- Bino, G., Grant, T. R., & Kingsford, R. T. (2015). Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Scientific Reports, 5, 16073.
- Bureau of Meteorology. (2016). Hydrologic Reference Stations Trend Explorer, from http://www.bom.gov.au/water/hrs/index.shtml
- Chen, J., Brissette, F. P., & Zhang, X. J. (2014). A multi-site stochastic weather generator for daily precipitation and temperature. 57(5), 1375-1391.
- Cowie, A. L., Jessop, R. S., & Macleod, D. A. (1996). Effects of waterlogging on chickpeas. I. Influence of timing of waterlogging. Plant and Soil, 183, 97-103.
- Craine, S. I., & Orians, C. M. (2006). Effects of flooding on Pitch Pine (Pinus rigida Mill.) growth and survivorship. Journal of the Torrey Botanical Society, 133, 289-298.
- Crook, D. A., Koster, W. M., Macdonald, J. I., Nicol, S. J., Belcher, C. A., Dawson, D. R., O'Mahony, D. J., Lovett, D., Walker, A., & L., B. (2010). Catadromous migrations by female tupong (Pseudaphritis urvillii) in coastal streams in Victoria, Australia Marine and Freshwater Research, 61, 474–483.
- Crook, D. A., Macdonald, J. I., Morrongiello, J. R., Belcher, C. A., Lovett, D., Walker, A., & J., N. S. (2014). Environmental cues and extended estuarine residence in seaward migrating eels (Anguilla australis). Freshwater Biology, 59, 1710-1720.
- CSIRO. (2008). Water availability in the Murray-Darling Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project: CSIRO, Canberra.
- DELWP. (2015). Victorian Water Accounts 2013-2014. A statement of Victorian water resources. Melbourne.
- DELWP. (2016). Guidelines for Assessing the Impact of Climate Change on Water Supplies on Victoria. FINAL: Department Environment, Land, Water and Planning (DELWP).
- Ellem, B. A., Bryant, A., & O'Connor, A. (1998). Statistical modelling of platypus, *Ornithorhynchus anatinus*, habitat preferences using generalized linear models. Australian Mammalogy, 20, 281-285.
- Esteban, J. A., & Edwin, S. E. (2016). Waterlogging: its effects on different White Maize genotypes. International Journal of Sciences: Basic and Applied Research, 30, 112-120.

Etherington, J. R. (1982). Environment and plant ecology (2nd ed.): John Wiley and Sons, Chichester.

- Ewert, J., & Pettigrove, V. (2003). The effects of low flows on stream health in the Yarra River during the 2002/2003 drought: A report to the EPA. Melbourne Water Corporation.
- Frankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170(0), 56-63. doi: <u>http://dx.doi.org/10.1016/j.biocon.2013.12.036</u>
- Gerurts, C. J., Fox, J. E. D., Luong, T. M., & Cox, M. C. (2005). Flood tolerance of Panicum decompositum: effects on seedling biomass. Tropical Grasslands, 39, 160-170.
- GHD. (2016). High Flow Trial Releases in the Upper Yarra River Ecological Monitoring: Report prepared by GHD for Melbourne Water.

- Grant, T. R. (1992). Historical and current distribution of the platypus, Ornithorhynchus anatinus, in Australia. In M. L. Augee (Ed.), Platypus and Echidnas (pp. 232-254): Royal Zoological Society of New South Wales.
- Grant, T. R. (2004). Depth and substrate selection by platypuses, Ornithorhynchus anatinus, in the lower Hastings River, New South Wales. Proceedings of the Linnean Society of New South Wales, 125, 235-241.
- Grant, T. R., & Temple-Smith, P. D. (1998). Field biology of the platypus (*Ornithorhynchus anatinus*): historical and current perspectives. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353(1372), 1081-1091.
- Griffiths, J., Kelly, T., & Weeks, A. (2014). Impacts of high flows on platypus movements and habitat use in an urban stream. (Report to Melbourne Water). Parkville: **cesar**.
- Grose, M., Abbs, D., Bhend, J., Chiew, F., Church, J., Ekström, M., Kirono, D., Lenton, A., Lucas, C.,
 McInnes, K., Moise, A., Monselesan, D., Mpelasoka, F., Webb, L., & Whetton, P. (2015). Southern
 Slopes Cluster Report, Climate Change in Australia Projections for Australia's Natural Resource
 Management Regions: Cluster Reports In M. Ekström, P. Whetton, C. Gerbing, M. Grose, L. Webb
 & J. Risbey (Eds.): CSIRO and Bureau of Meteorology, Australia.
- Gust, N., & Handasyde, K. (1995). Seasonal variation in the ranging behaviour of the platypus (*Ornithorynchus anatinus*) on the Goulburn River, Victoria. Australian Journal of Zoology, 43(2), 193-208.
- Hare, M. D., Saengkham, M. T., P., Wongpichet, K., & Tudsri, S. (2004). Waterlogging tolerance of some tropical pasture grasses. Tropical Grasslands, 38, 227-233.
- Holland, N., & Jackson, S. M. (2002). Reproductive behaviour and food consumption associated with the captive breeding of platypus (*Ornithorhynchus anatinus*). Journal of Zoology (London), 256, 279-288.
- IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In R. K. Pachauri & L. A. Meyer (Eds.), (pp. 151). Geneva, Switzerland: IPCC.
- Jacobs. (2015a). Options assessment for Yering backswamp: Report prepared by Jacobs for Melbourne Water.
- Jacobs. (2015b). Spadoni's Billabong Design Report: Report prepared by Jacobs for Melbourne Water.
- Jacobs. (2015c). Spadoni's Billabong improving environmental water delivery: options analysis Report prepared by Jacobs for Melbourne Water.
- Jacobs. (2015d). Spadoni's Billabong: inlet level assessment. Memorandum prepared by Jacobs for Melbourne Water.
- Jacobs. (2017a). Conceptualisation and options assessment (Bunyule Billabong).
- Jacobs. (2017b). Environmental Flow Study for Dandenong Creek: Report prepared by Jacobs for Melbourne Water.
- Jacobs. (2017c). Environmental Flow Study for Dandenong Creek (Report to Melbourne Water).

Jacobs. (2017d). Memorandum - Conceptual model and options assessment (Bolin Bolin Billabong).

- Jacobs. (2017e). Yarra Bridge Billabong: Value and water regime investigation: Report prepared by Jacobs for Melbourne Water.
- Jacobs. (2017f). Yarra River Environmental Water Management Plan: Report prepared by Jacobs for Melbourne Water.
- Jacobs, APC, & Cesar. (2016). Understanding the environmental water requirements of platypus. : Report by Jacobs, Australian Platypus Conservancy and Cesar for Melbourne Water.
- Kelly, T., Griffiths, J., & Weeks, A. (2012). Development of a novel tracking technique for platypuses using acoustic telemetry. (Report to Melbourne Water). Parkville: **cesar**.
- Koster, W. M., Crook, D. A., Dawson, D. R., Gaskill, S., & R., M. J. (2017). Predicting the influence of streamflow on migration and spawning of a threatened diadromous fish, the Australian grayling Prototroctes maraena. Environmental Management online early.
- Koster, W. M., Dawson, D. R., & Crook, D. A. (2013). Downstream spawning migration by the amphidromous Australian grayling (Prototroctes maraena) in a coastal river in south-eastern Australia. Marine and Freshwater Research, 64, 31–41.
- Krueger, B., Hunter, S., & Serena, M. (1992). Husbandry, diet and behaviour of platypus *Ornithorhynchus anatinus* at Healesville Sanctuary. International Zoo Yearbook, 31, 64-71.
- Lenssen, J. P. M., ten Dolle, G. E., & Blom, C. W. P. M. (1998). The effects of flooding on the recruitment of reed marsh and tall forb plant species. Plant Ecology, 139, 13-23.
- Lynne, D. E., & Waldren, S. (2003). Survival of Ranunculus repens L. (Creeping Buttercup) in an amphibious habitat. Annals of Botany, 91, 75-84.
- Martin, E. H., Walsh, C. J., Serena, M., & Webb, J. A. (2013). Urban stormwater runoff limits distribution of platypus. Austral Ecology. doi: DOI: 10.1111/aec.12083
- McDaniel, V., Skaggs, R. W., & Negm, L. M. (2016). Injury and recovery of maize roots affected by flooding. Applied Engineering and Agriculture, 32, 627-638.
- McDowall, R. M., & Eldon., G. A. (1980). The ecology of whitebait migrations (Galaxiidae: Galaxias spp.). New Zealand Ministry of Agriculture and Fisheries, Fisheries Research Bulletin, 20.
- MIller, K. A., Webb, J. A., de Little, S. C., Siobahn, C., & Stweardson, M. J. (2013). Environmental flows can reduce the encroachment of terrestrial vegetation into river channels: a systematic literature review. Environmental Management online early, 52, 1202-1212.
- Otley, H., Munks, S. A., & Hindel, M. A. (2000). Activity patterns, movements and burrows of platypuses (*Ornithorhynchus anatinus*) in a sub-alpine Tasmanian lake. Australian Journal of Zoology, 48, 701-713.
- Potter, N. J., Chiew, F. H. S., Zheng, H., Ekström, M., & Zhang, L. (2016). Hydroclimate projections for Victoria at 2040 and 2065. Draft Version 1.7: CSIRO for the Department of Environment, Land, Water and Planning.
- Serena, M. (1994). Use of time and space by platypus (*Ornithorhynchus anatinus*: Monotremata) along a Victorian stream Journal of Zoology, 232(1), 117-131.
- Serena, M., & Grant, T. R. (2017). Effect of flow on platypus (*Ornithorhynchus anatinus*) reproduction and related population processes in the upper Shoalhaven River. Australian Journal of Zoology, 65(2), 130-139. doi: https://doi.org/10.1071/ZO17025

- Serena, M., & Pettigrove, V. (2005). Relationship of sediment toxicants and water quality to the distribution of platypus populations in urban streams. Journal of the North American Benthological Society, 24(3), 679-689.
- Serena, M., Thomas, J., Williams, G., & Officer, R. (1998a). Use of stream and river habitats by the platypus, *Ornithorhynchus anatinus*, in an urban fringe environment. Australian Journal of Zoology, 46(3), 267-282.
- Serena, M., Thomas, J., & Williams, G. A. (1998b). Status and habitat relationships of platypus in the Dandenong Creek Catchment: II. Results of surveys and radio-tracking studies, September 1997 -March 1998. (Report to Melbourne Water). Whittlesea: Australian Platypus Conservancy.
- Serena, M., & Williams, G. A. (1999). Formulation of a reintroduction strategy for platypus in the Melbourne metropolitan region. (Report to Melbourne Water). Whittlesea: Austrlian Platypus Conservancy.
- Serena, M., Williams, G. A., Weeks, A. R., & Griffiths, J. (2014). Variation in platypus (Ornithorhynchus anatinus) life-history attributes and population trajectories in urban streams. Australian Journal of Zoology, 62(3), 223-234. doi: dx.doi.org/10.1071/ZO13079
- Serena, M., Worley, M., Swinnerton, M., & Williams, G. A. (2001). Effect of food availability and habitat on the distribution of platypus (*Ornithorhynchus anatinus*) foraging activity. Australian Journal of Zoology, 49(3), 263-277.
- Shiferaw, W., Shelton, H. M., & So, H. B. (1992). Tolerance of some subtropical pasture legumes to waterlogging. Tropical Grasslands, 26, 187-195.
- SKM. (2005). Determination of the Minimum Environmental Water Requirement for the Yarra River. Minimum environmental water requirement and complementary works recommendations.: Sinclair Knight Merz, Melbourne.
- SKM. (2012). Yarra River Environmental Flow Study Review: Report prepared by SKM for Melbourne Water.
- Sloane, R. (1984). The upstream movements of fish in the Plenty River, Tasmania. Papers and proceedings of the Royal Society of Tasmania, 118, 163-171.
- Soule, M. E. (1980). Thresholds for survival: maintaining fitnessand evolutionary potential. In M. E. Soule & B. A. Wilcox (Eds.), Conservation Biology: An Evolutionary-Ecological Perspective (pp. 151-169). Sunderland, MA: Sinauer.
- Timbal, B., Ekström, M., Fiddes, S., Grose, M., Kirono, D., Lim, E., Lucas, C., & Wilson, L. (2016). Climate Change Science and Victoria, Victoria Climate Initiative (VicCI) report: Bureau of Meteorology and CSIRO, Australia.
- Tonkin, Z., Kearns, J., Fanson, B., Mahoney, J., Ayres, R., Raymond, S., Todd, C., & O'Mahony, J. (2017). An assessment of Macquarie perch population dynamics in the Yarra River: Unpublished Client Report for Melbourne Water, June 2017. Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria.
- Tonkin, Z., Kearns, J., J., O. M., Mahoney, J., Kitchingman, A., & Ayres, R. (2015). Sustaining Macquarie perch in the Yarra River – a multipopulation investigation of recruitment dynamics: Arthur Rylah Institute for Environmental Research Unpublished Client Report for Melbourne Water. Department of Environment, Land, Water and Planning, Heidelberg, Victoria.
- VEWH. (2016). Seasonal Watering Plan 2016-2017 (pp. 170): Victorian Environmental Water Holder,.

- Worley, M., & Serena, M. (2000). Ecology and conservation of platypuses in the Wimmera River catchment. IV. Results of habitat studies (Report to Rio Tinto Project Platypus). Whittlesea: Australian Platypus Conservancy.
- Zampatti, B. P., Koster, W., & Crook, D. (2003). Assessment of the rock-ramp fishway at Dights Falls, lower Yarra River, Melbourne: Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment, Heidelberg, Victoria.

Appendix A. Ecological objectives

Table A.1 : Reach 1 – downstream of Upper Yarra Reservoir ecological objectives.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
Geomorphology	Maintain existing channel dimensions and form	G1-1	Maintain existing channel dimensions and minimise further channel contraction	Bankfull flow	Winter / Spring	 No further contraction in channel geometry. 	Medium to long	No change from SKM (2012)
	Rehabilitate instream habitat	G1-2	Scour fine sediment and biofilms from riffles	Freshes	Throughout year	Prevent sediment build up on cobbles in riffle zone	Short	No change from SKM (2012)
		G1-3	Scour sediment from pools	High flow	Winter / Spring	Flush fine sediment from pools and increased habitat availability.	Medium	No change from SKM (2012)
Macroinvertebrates	Rehabilitate	M1-1	Access to and area of riffle habitat	Low flow	Summer / Autumn	Increase the diversity & abundance to the maximum	Short to	Modified low flow objective and related
	community to	M1-2	habitat area in Winter/Spring)	Low flow	Winter / Spring	possible based on the	mediam	changes in Summer / Autumn and Winter /
	maximum diversity & abundance possible	M1-3	Clean cobbles in faster flowing reaches	Freshes	Throughout year	reduce sediment accumulation		inundation of habitat areas.
	downstream of a large dam with the aim of meeting Yarra SEPP Schedule F7 objectives.	M1-4	Flush sediment from pools & entrain organic material from littoral zone	High flow	Winter / Spring	will improve access to benthic habitats will result in an increase in invertebrate biodiversity & abundance.		
Fish	Maintain or improve	F1-1	Maintain hydraulic habitat (i.e. pool, riffle,	Low flow	Summer / Autumn	Maintenance of hydraulic	Short to	Split low flow objective to distinguish
populations of native indigenous fish (river	populations of native indigenous fish (river		run) and passage for local movement	Low flow	Winter / Spring	habitat; Localised movements	medium	Summer / Autumn and Winter / Spring low flow components
	blackfish, Australian smelt, short-finned eel, and ornate galaxias), and comply with Yarra SEPP Schedule F7 objectives	F1-2	Flush accumulated fine sediments to maintain or improve quality and availability of habitats	Freshes / High flow	Winter / Spring	Accumulated fine sediments scoured from the river bed	Short to medium	Revised list of fish species documented in objective from SKM (2012). What was previously called mountain galaxias in the Yarra River is now called ornate galaxias. Added Australian smelt, short-finned eel, and ornate galaxias.
Vegetation	Maintain in-stream & riparian vegetation extent, structure & composition	V1-1	Provide shallow, permanently inundated in- stream environments over Summer/Autumn Dry low and medium-level banks to provide hydrological complexity	Low flow	Summer / Autumn Maintain in-stream and rip vegetation characteristics as species richness and abundance, structural complexity, vertical zonatic spatial extent. Winter / Spring Maintain in-stream microb biofilms attached to subme hard surfaces (e.g. cobble and boulders). Note that t microbial biofilms are likely be heterotrophic, because		Short to Medium	Restructured and revised objectives and related 'Functions' and 'Expected response' to reflect different vegetation components/habitats (in-stream, riparian, billabong/floodplain and terrestrial) and their
Maintain in-stream microbial biofilms or submerged hard surfaces	Maintain in-stream microbial biofilms on submerged hard surfaces	V1-2	Prolonged inundation of instream channel, lower bench and bars to disadvantage terrestrial species and prevent their colonizing of instream channel Inundate low-level benches to ensure vertical zonation of inundation-tolerant fringing vegetation	Low flow				Explicit inclusion of in-stream biofilms as a component of aquatic vegetation.
		V1-3	Wet medium-level banks to provide periodically inundated environments at medium levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation	Freshes	Throughout year	stream in Reach 1.		/ Autumn and Winter / Spring flow components.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
			Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)					
		V1-4	Provide deeper, permanently inundated in- stream environments over Winter/Spring Inundate medium-level banks to provide periodically inundated environments at higher levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	High flow	Winter / Spring			
		V1-5	Wet highest-level banks to provide periodically inundated environments at highest levels in-stream Scour in-stream and top-of-bank environments to prevent undesirable plant encroachment into stream channel and onto banks Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation) Remove mud and silt from cobbles and boulders	Bankfull	Winter / Spring	 Provide hydrological disturbance. Specifically: Maintain in-stream and riparian vegetation characteristics such species richness and abundance & structural complexity Maintain clean submerged hard surfaces for microbial biofilms 	Short	
	Limit encroachment V1 of undesirable riparian or terrestrial vegetation into V1		Provide permanently inundated in-stream environments all year Inundate channel and low- and medium- level banks to prevent undesirable plant	Low flow High flow	All year Winter / Spring	 Limit encroachment of sawsedges and other undesirable riparian or terrestrial vegetation into stream channel 	Medium	
		V1-8	Scour in-stream and top-of-bank environments to prevent undesirable plant encroachment into stream channel and onto banks	Bankfull	Winter / Spring			
Platypus	Maintain/improve current status of population	P1-1	Maintain platypus habitat, maintain longitudinal connectivity across riffle areas, minimise predation risk, allow juvenile dispersal, support macroinvertebrate populations.	Low flow	All year	 Maintain habitat quality and food resources for platypuses. Current flow regimes for Reach 1 appear to be suitable to provide relatively high quality platypus habitat. 	Short to medium	New objectives developed for Platypus, drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016).
		P1-2	Maintain minimum pool depth 0.5 m.	Low flow (extreme)	Extended dry periods (drought)	 Maintain refuge areas during drought. 	Short to medium	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon: time
		P1-3	Promote habitat diversity, scour fine sediment, promote macroinvertebrate diversity/abundance.	Freshes / High flow	All year	 Improve habitat quality and food resources for platypuses. 	Short to medium
		P1-4	Minimise bank erosion and in-stream sedimentation	Limit flows above scouring thresholds	All year	 Improve habitat quality for platypus food resources (macroinvertebrates) 	Medium
		P1-5	Prevent inundation of breeding burrows	Avoid bankfull or overbank flows	Nov-Feb	 Improved reproductive success. 	Short
Birds, Frogs and Amenity	Birds – Maintain or improve the species richness and abundance of streamside and wetland populations	BFA1-1	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Summer / Autumn	 Maintain permanent pools with an adequate depth of water for habitat for biota such as macroinvertebrates, an important food source for birds, and frogs 	Short to medium
	Frogs - Maintain diversity and improve					 Provides disturbance to scour the river bed of sediment and improve the quality of instream habitat 	
	abundance and distribution of expected species					 Also provides a suitable range of depths for the growth of in- stream vegetation 	
	Amenity - Maintain and/or improve	BFA1-2		Fresh	Summer / Autumn	 Provides disturbance to scour the river bed of sediment and improve the quality of habitat within the river 	Short to medium
	condition					 Provides a suitable depth of water for waterbirds, maintaining the extent of habitat range they can utilise 	
						 Provides flow variability to maintain a diversity of emergent and riparian vegetation and helps to influence vegetation zonation patterns across the channel, which then provides a variety of habitats. 	
		BFA1-3	Rehabilitate and maintain habitat within the higher parts of the river channel	High flow	Summer / Autumn	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat 	Short to medium
						 Sustains longitudinal connectivity, providing opportunities to move along and between habitats for waterbirds. 	
						 Helps to influence vegetation zonation patterns across the 	

se	Description of change
) ו	
1	
D 1	New generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)
2	
2	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
						channel, which provides a variety of habitats.		
		BFA1-4	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Winter / Spring	 Increase habitat area for instream flora and fauna including access to large woody debris and overhanging banks. Encourages the die-back of terrestrial vegetation that has encroached down the bank during the Summer low flow period 	Short to medium	
		BFA1-5		Fresh	Winter / Spring	 Provides flow variability to maintain a diversity of emergent and riparian vegetation and to influence vegetation zonation patterns across the channel, which provides a variety of habitats for birds Entrains and transports terrestrial organic matter along that has accumulated on benches. 	Short to medium	
		BFA1-6	Rehabilitate and maintain appropriate habitat within the higher parts of the river channel	High flow	Winter / Spring	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat. Sustains longitudinal connectivity, providing opportunities to move along and between habitats. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	Short to medium	
		BFA1-7	Maintain instream habitats and improve the condition of billabongs connected around bankfull	Bankfull	Winter / Spring	 Increase habitat area, including access to large woody debris and overhanging banks for instream biota, and engage floodplain and billabong habitat for frogs and waterbirds. Helps to disturb and reset aquatic and riparian vegetation communities, important for a range of diverse habitat types for birds and frogs. Entrains and transports organic matter and sediment that has accumulated in pools and the 	Short to medium	

Final	Report
-------	--------

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
						upper channel, improving habitat quality.		

Table A.2 : Reach 2 – Armstrong Creek to Millgrove ecological objectives.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change	
Geomorphology	Maintain channel dimensions and form	Itain channel ensions and formG2-1Maintain channel dimensions and minimise further channel contractionBankfull flow		Bankfull flow	Winter / Spring	No further contraction in channel geometry.	Medium to long	No change from SKM (2012)	
	Engage low level floodplains	G2-2	Connectivity	Bankfull / Iow overbank flow	Winter / Spring	Appropriate frequency of inundation of low level floodplain & billabongs achieved	Short	No change from SKM (2012)	
	Maintain access to riffle & pool habitat	G2-3	Scour fine sediment and biofilms from riffles	Freshes	Throughout year	Prevent sediment build up on cobbles in riffle zone	Short	No change from SKM (2012)	
		G2-4	Scour sediment from pools	High flow	Winter / Spring	Flush fine sediment from pools and increased habitat availability.	Medium	No change from SKM (2012)	
Macroinvertebrates	Maintain current macroinvertebrate	M2-1	Access to and area of riffle habitat (Seasonal variation to inundate additional	Low flow	Summer / Autumn	Expect Macroinvertebrates scores to continue to meet	Short to medium	Modified low flow objective and related 'Function' so as to capture assumed	
	community to comply with Yarra SEPP	M2-2	habitat area in Winter/Spring)	Low flow	Winter / Spring	SEPP objectives for composition, but improve with		changes in Summer / Autumn and Winter / Spring macroinvertebrate biomass linked to	
	Schedule F7 objectives	M2-3	Disturbance to scour biofilms & sediment	Freshes	Throughout year	regard to SIGNAL scores		inundation of habitat areas.	
Fish	Maintain or improve populations of native	F2-1	Maintain hydraulic habitat (i.e. pool, riffle, run) and passage for local movement	Low flow	Summer / Autumn	Maintenance of hydraulic habitat; Localised movements	Short to medium	Rewritten objectives and revised list of fish species. No longer include mountain	
	indigenous fish (river blackfish, Australian			Low flow	Winter / Spring			galaxias as they have not recently been surveyed in this reach. Split low flow	
	smelt, ornate galaxias, Australian grayling, short-finned	smelt, ornate galaxias, Australian grayling, short-finned	r, ornate F2-2 ias, Australian ng, short-finned	Flush accumulated fine sediments to maintain or improve quality and availability of habitats	Freshes / High flow	Winter / Spring	Accumulated fine sediments scoured from the river bed	Short to medium	objective to distinguish Summer / Autumn and Winter / Spring low flow components.
eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and comply with Yarra SEPP Schedule F7 objectives.	F2-3	Facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches	Freshes / High flow	Spring / early Summer	Upstream immigration from downstream river reaches	Short	Changed objective so that is it more explicit as to the species and timing of migration. Upstream movement of diadromous fishes occurs over a broad time frame (e.g. August to February), with greatest richness of species migrating around September- November (McDowall & Eldon. 1980, Sloane 1984, Zampatti et al. 2003)		
	F2-4	Cue downstream spawning migration by Australian grayling to lower river reaches.	High flow	Autumn	Downstream migration to lower river reaches to spawn	Short	Revised wording of objective and timing of high flow (from Autumn / Winter to Autumn). Australian grayling undertakes downstream migrations to spawn between late March and May (Koster et al. 2017, Koster et al. 2013)		
		F2-5	Cue downstream migration by tupong to the sea to spawn	Freshes / High Flow	Late Autumn / Winter	Downstream migration to the sea to spawn	Short	New objective to cue downstream migration by tupong. Tupong undertake downstream migrations between late May and August, associated with high river flows (Crook et al. 2010).	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respons time
		F2-6	Cue downstream migration by eels to the sea to spawn	Freshes / High flow	Throughout year, especially late Summer	 Downstream migration to the sea to spawn 	Short
Vegetation	Maintain or improve in-stream & riparian vegetation extent, structure &	V2-1	Provide shallow, permanently inundated in- stream environments all year Dry low- and medium-level banks to provide hydrological complexity	Low flow	Summer / Autumn	 Maintain in-stream and riparian vegetation characteristics such as species richness and abundance, structural 	Short to Medium
structure & composition Maintain in-stream microbial biofilms on submerged hard surfaces	V2-2	Prolonged inundation of instream channel, lower bench and bars to disadvantage terrestrial species and prevent their colonizing of instream channel Inundate low-level benches to ensure vertical zonation of inundation-tolerant fringing vegetation	Low flow	Winter / Spring	 complexity, ventical zonation & spatial extent. Specifically: 1) Maintain or improve (e.g. increase in spatial extent) the currently small beds of submerged and semi-emergent native vegetation instream, such as Parrots 		
		V2-3	Wet medium-level banks to provide periodically inundated environments at various levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	Freshes	All year	 Feather 2) Maintain inundation-tolerant terrestrial or riparian vegetation, such as water ferns, on lower- and middle-level banks Maintain in-stream microbial biofilms attached to submerged hard surfaces (e.g. cobbles and boulders). Note that these microbial biofilms are likely to be a mixture of heterotrophic and autotrophic elements (e.g. bacterial fungi and algae), because of the more open nature of the stream in Reach 2 	
		V2-4	Provide deeper, permanently inundated in- stream environments over Winter/Spring Inundate medium-level banks to provide periodically inundated environments at higher levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	High flow	Winter / Spring	 Maintain in-stream and riparian vegetation characteristics such as species richness and abundance, structural complexity, vertical zonation & spatial extent 	Short to medium
		V2-5	Wet highest-level banks to provide periodically inundated environments at highest levels in-stream Scour in-stream and top-of-bank environments to prevent undesirable plant	Bankfull	Winter / Spring	 Provide hydrological disturbance. Specifically: 1) Maintain existing in-stream and riparian vegetation characteristics such species 	Short

se	Description of change
	New objective to cue downstream migration by eels. Eels undertake downstream migrations throughout the year, with an increase in frequency over Summer and following high river flows (Crook et al. 2014).
)	Restructured objectives and related 'Functions' and 'Expected responses' to reflect different vegetation components/habitats (in-stream, riparian, billabong/floodplain and terrestrial) and their contrasting watering requirements to promote or discourage each component. Explicit inclusion of in-stream biofilms as a component of aquatic vegetation. Division of low flow 'Functions' into Summer / Autumn and Winter / Spring flow components.
2	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
			encroachment into stream channel and onto banks Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation) Remove mud and silt from cobbles and boulders			 richness and abundance & structural complexity 2) Maintain clean submerged hard surfaces for microbial biofilms 	
	Maintain inundation- tolerant vegetation in riparian zone at top of bank	V2-6	Maintain periodically wetted areas on top- of-bank to promote inundation-tolerant riparian vegetation on upper levels of bank and lower riparian zone Provide hydrological complexity (and therefore vegetation zonation)	Bankfull	Winter / Spring	 Maintain inundation-tolerant riparian species, such as Swamp Paperbark, at top-of bank 	Medium
Platypus	Maintain/improve current status of population	P2-1	Maintain platypus habitat, maintain longitudinal connectivity across riffle areas, minimise predation risk, allow juvenile dispersal, support macroinvertebrate populations.	Low flow	All year	 Maintain habitat quality and food resources for platypuses. 	Short to mediun
		P2-2	Maintain minimum pool depth >1m.	Low flow (extreme)	Extended dry periods (drought)	Maintain refuge areas during drought.	Short to mediun
		P2-3	Promote habitat diversity, scour fine sediment, promote macroinvertebrate diversity/abundance.	Freshes / High flow	All year	Improve habitat quality and food resources for platypuses.	Short to mediun
		P2-4	Minimise bank erosion and in-stream sedimentation	Limit flows above scouring thresholds	All year	 Improve habitat quality for platypus food resources (macroinvertebrates) 	Mediun
		P2-5	Prevent inundation of breeding burrows	Avoid bankfull or overbank flows	Nov-Feb	Improved reproductive success.	Short
Birds, Frogs and Amenity	Birds - Maintain or improve the species richness and abundance of streamside and wetland populations	BFA2-1	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Summer / Autumn	 Maintain permanent pools with an adequate depth of water for habitat for biota such as macroinvertebrates, an important food source for birds, and frogs Provides disturbance to scour the river bad of acdiment and 	Short to mediun
	Frogs - Maintain diversity and improve the overall abundance and distribution of					 the river bed of sediment and improve the quality of instream habitat Also provides a suitable range of depths for the growth of in- 	
	expected species	BFA2-2		Fresh	Summer / Autumn	 Provides disturbance to scour the river bed of sediment and improve the quality of habitat within the river 	Short to mediun

se	Description of change
1	
כ ז	New objectives developed for Platypus, drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016).
ว า	
ว า	
ו	
כ ז	New generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)
כ ר	

Final Report

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change	
	Amenity - Maintain and/or improve condition			 Provides a suitable depth of water for waterbirds, maintaining the extent of habitat range they can utilise Provides flow variability to maintain a diversity of emergent and riparian vegetation and helps to influence vegetation zonation patterns across the channel, which then provides a variety of habitats. 					
		BFA2-3	Rehabilitate and maintain habitat within the higher parts of the river channel	High flow	Summer / Autumn	nmer / umn·Entrains and transports sediment along the river improving the quality of, and access to, instream habitatShort to medium·Sustains longitudinal connectivity, providing opportunities to move along and between habitats for waterbirds.·Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats.·			
		BFA2-4	BFA2-4 Maintain acce habitat, provid support the gr an important s habitat	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low now	Winter / Spring	 Increase habitat area for instream flora and fauna including access to large woody debris and overhanging banks. Encourages the die-back of terrestrial vegetation that has encroached down the bank during the Summer low flow period 	Short to medium	
		BFA2-5		Fresh	Winter / Spring	 Provides flow variability to maintain a diversity of emergent and riparian vegetation and to influence vegetation zonation patterns across the channel, which provides a variety of habitats for birds Entrains and transports terrestrial organic matter along that has accumulated on benches. 	Short to medium		
		BFA2-6	Rehabilitate and maintain appropriate habitat within the higher parts of the river channel	High flow	Winter / Spring	Entrains and transports sediment along the river	Short to medium		

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
						 improving the quality of, and access to, instream habitat. Sustains longitudinal connectivity, providing opportunities to move along and between habitats. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 		
		BFA2-7	Maintain instream habitats and improve the condition of billabongs connected around bankfull	Bankfull	Winter / Spring	 Increase habitat area, including access to large woody debris and overhanging banks for instream biota, and engage floodplain and billabong habitat for frogs and waterbirds. Helps to disturb and reset aquatic and riparian vegetation communities, important for a range of diverse habitat types for birds and frogs. Entrains and transports organic matter and sediment that has accumulated in pools and the upper channel, improving habitat quality. 	Short to medium	
		BFA2-8	Reconnect the floodplain and floodplain billabongs with the instream channel Maintain wetland/billabong species and communities	Overbank	Winter / Spring	 Improves the frequency and extent of flooding in floodplain wetlands and billabongs. Provides water for flood- tolerant vegetation such as River Red Gum Provides wetted habitat for waterbird and frog species who don't necessarily require instream habitat 	Short to medium	

Table A.3 : Reach 3 – Millgrove to Watts River ecological objectives.

Asset	Objective	No.	Function	Flow component	Timing	E>	pected response	Response time	Description of change			
Geomorphology	Maintain channel dimensions and form	G3-1	Maintain existing channel dimensions and minimise further channel contraction	High / bankfull flow	Winter / Spring	•	No contraction in channel geometry.	Medium to long	No change from SKM (2012)			
		G3-2	Bank stability	Rate of fall	Following flow events		No increased rate or extent of bank scour above that expected naturally.	Medium	No change from SKM (2012)			
	Rehabilitate lateral connectivity with billabongs connected around bankfull	G3-3	Form and maintain billabongs and meander train	Bankfull flow	Spring	-	Maintenance of floodplain features through scour and deposition.	Short	No change from SKM (2012)			
	Rehabilitate floodplains	G3-4	Form and maintain floodplain features	Overbank flow	Spring		Increased frequency & duration of inundation of floodplain	Short	No change from SKM (2012)			
Macroinvertebrates	Maintain and	M3-1	Access to and area of LWD & edge	Low flow	Summer / Autumn	-	Expect Macroinvertebrates	Short to	Modified low flow objective and related			
	rehabilitate current macroinvertebrate	M3-2	additional habitat area in Winter/Spring)	Low flow	Winter / Spring		SEPP objectives.	medium	changes in Summer / Autumn and Winter /			
	community to comply with Yarra SEPP Schedule F7 objectives		Disturbance to scour biofilm & sediment from LWD	Freshes	Throughout year				inundation of habitat areas.			
Fish	Maintain or improve	F3-1	Maintain hydraulic habitat (i.e. pool, riffle,	Low flow	Summer / Autumn	•	Maintenance of hydraulic	Short to	Rewritten objectives and revised list of fish			
	populations of native indigenous fish (river		run) and passage for local movement	Low flow	Winter / Spring		habitat; Localised movements	medium	galaxias as they have not recently been			
	blackfish, Australian smelt, ornate galaxias, Australian	F3-2	Flush accumulated fine sediments to maintain or improve quality and availability of habitats	Freshes / High flow	Winter / Spring		Accumulated fine sediments scoured from the river bed	Short to surveyed in this reach. Split low flow medium objective to distinguish Summer / Autuand Winter / Spring low flow compone	surveyed in this reach. Split low flow objective to distinguish Summer / Autumn and Winter / Spring low flow components			
grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and comply with Yarra SEPP Schedule F7 objectives.	grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and comply with Yarra SEPP Schedule F7 objectives.	eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias), and comply with Yarra SEPP Schedule F7 objectives.	eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and comply with Yarra SEPP	eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and comply with Yarra SEPP	F3-3	Facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches	Freshes / High flow	Spring / early Summer		Upstream immigration from downstream river reaches	Short	Changed objective so that is it more explicit as to the species and timing of migration. Upstream movement of diadromous fishes occurs over a broad time frame (e.g. August to February), with greatest richness of species migrating around September- November (McDowall & Eldon. 1980, Sloane 1984, Zampatti et al. 2003)
			F3-4	Cue downstream spawning migration by Australian grayling to lower river reaches	High flow	Autumn		Downstream migration to lower river reaches to spawn	Short	Revised wording of objective and timing of high flow (from Autumn / Winter to Autumn). Australian grayling undertakes downstream migrations to spawn between late March and May (Koster et al. 2017, Koster et al. 2013)		
			F3-5	Cue downstream migration by tupong to the sea to spawn	Freshes / High flow	Late Autumn / Winter	•	Downstream migration to the sea to spawn	Short	New objective to cue downstream migration by tupong. Tupong undertake downstream migrations between late May and August, associated with high river flows (Crook et al. 2010).		
		F3-6	Cue downstream migration by eels to the sea to spawn	Freshes / High flow	Throughout year, especially late Summer	-	Downstream migration to the sea to spawn	Short	New objective to cue downstream migration by eels. Eels undertake downstream migrations throughout the			

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time		
Vegetation	Maintain or improve in-stream & riparian vegetation extent, structure &	V3-1	Provide shallow, permanently inundated in- stream environments all year Dry low- and medium-level banks to provide hydrological complexity	Low flow	Summer / Autumn	Maintain in-stream and riparian vegetation characteristics such as species richness and abundance, structural	Short		
	composition	V3-2	Prolonged inundation of instream channel, lower bench and bars to disadvantage terrestrial species and prevent their colonizing of instream channel Inundate low-level benches to ensure vertical zonation of inundation-tolerant fringing vegetation	Low flow	Winter / Spring	spatial extent. Specifically: 1) Maintain or improve the currently small beds of submerged and semi- emergent native vegetation in- stream, such as Parrots Feather			
		V3-3	Wet medium-level banks to provide periodically inundated environments at various levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	Freshes	Summer / Autumn	2) Maintain fringing beds of Cumbungi and rehabilitate or facilitate the development of new beds of Common Reed and other diverse rush and sedge assemblages in the riparian zone			
		V3-4	Wet higher benches to maintain fringing aquatic vegetation and ensure vertical zonation of fringing vegetation Facilitate dispersion of propagules	Fresh	Winter / Spring (June or July)				
			-	V3-5	Promote flood-tolerant vegetation higher on banks	Fresh	Winter / Spring (June – September)		
		V3-6	Provide deeper, permanently inundated in- stream environments over Winter/Spring Inundate medium-level banks to provide periodically inundated environments at higher levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	High flow	Winter / Spring				
	Maintain inundation- tolerant vegetation in riparian zone at top of bank	V3-7	Maintain periodically wetted areas on top- of-bank to promote inundation-tolerant riparian vegetation on upper levels of bank and lower riparian zone	Bankfull	Winter / Spring	 Maintain inundation-tolerant riparian species, such as Swamp Paperbark, at top-of bank 	Mediun		

se	Description of change
	year, with an increase in frequency over Summer and following high river flows (Crook et al. 2014).
	Restructured objectives and related 'Functions' and 'Expected responses' to reflect different vegetation components/habitats (in-stream, riparian, billabong/floodplain and terrestrial) and their contrasting watering requirements to promote or discourage each component. Rationalisation of billabong/floodplain objectives and associated 'Functions' and 'Flow components'.
)	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
			Provide hydrological complexity (and therefore vegetation zonation)				
	Maintain or improve billabongs and	V3-8	Inundate specific billabongs	Bankfull and/or Overbank	Winter / Spring	Improve the ecological structure and ecological	Medium Long
	floodplains	V3-9	Inundate areas of the floodplain in order to promote growth of inundation-tolerant taxa (e.g. rushes, reeds, sedges) over terrestrial taxa (e.g. Silver Wattle, Tree Violet) on the top-of-bank, on the floodplain and in billabongs	Bankfull and/or Overbank	Winter / Spring	 function of specific billabongs (likely to require complementary works) Improve the ecological structure and ecological function of the floodplain more generally (contingent upon ability to inundate large areas of floodplain without damage to infrastructure) Improve lateral connectivity between river and floodplain/billabong habitats (likely to require complementary works) 	
Platypus	Maintain/improve current status of population	P3-1	Maintain platypus habitat, maintain longitudinal connectivity across riffle areas, minimise predation risk, allow juvenile dispersal, support macroinvertebrate populations.	Low flow	All year	 Maintain habitat quality and food resources for platypuses. 	Short to mediun
		P3-2	Maintain minimum pool depth >1m.	Low flow (extreme)	Extended dry periods (drought)	Maintain refuge areas during drought.	Short to mediun
		P3-3	Promote habitat diversity, scour fine sediment, promote macroinvertebrate diversity/abundance.	Freshes / High flow	All year	 Improve habitat quality and food resources for platypuses. 	Short to mediun
		P3-4	Minimise bank erosion and in-stream sedimentation	Limit flows above scouring thresholds	All year	 Improve habitat quality for platypus food resources (macroinvertebrates) 	Mediun
		P3-5	Prevent inundation of breeding burrows	Avoid bankfull or overbank flows	Nov-Feb	Improved reproductive success.	Short
Birds, Frogs and Amenity	Birds - Maintain or improve the species richness and abundance of streamside and wetland populations Frogs - Maintain diversity and improve the overall abundance and	BFA3-1	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Summer / Autumn	 Maintain permanent pools with an adequate depth of water for habitat for biota such as macroinvertebrates, an important food source for birds, and frogs Provides disturbance to scour the river bed of sediment and improve the quality of instream habitat Also provides a suitable range of depths for the growth of in- stream vegetation 	Short to mediun

se	Description of change
ı to	
c n	New objectives developed for Platypus, drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016).
2 N	
C N	
n	
D n	New generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
	distribution of expected species Amenity – Maintain and/or improve condition	BFA3-2		Fresh	Summer / Autumn	 Provides disturbance to scour the river bed of sediment and improve the quality of habitat within the river Provides a suitable depth of water for waterbirds, maintaining the extent of habitat range they can utilise Provides flow variability to maintain a diversity of emergent and riparian vegetation and helps to influence vegetation zonation patterns across the channel, which then provides a variety of habitats. 	Short to medium	
		BFA3-3	Rehabilitate and maintain habitat within the higher parts of the river channel	High flow	Summer / Autumn	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat Sustains longitudinal connectivity, providing opportunities to move along and between habitats for waterbirds. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	Short to medium	
		BFA3-4	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Winter / Spring	 Increase habitat area for instream flora and fauna including access to large woody debris and overhanging banks. Encourages the die-back of terrestrial vegetation that has encroached down the bank during the Summer low flow period 	Short to medium	
		BFA3-5		Fresh	Winter / Spring	 Provides flow variability to maintain a diversity of emergent and riparian vegetation and to influence vegetation zonation patterns across the channel, which provides a variety of habitats for birds 	Short to medium	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
						 Entrains and transports terrestrial organic matter along that has accumulated on benches. 	
		BFA3-6	Rehabilitate and maintain appropriate habitat within the higher parts of the river channel	High flow	Winter / Spring	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat. 	Short t mediur
						 Sustains longitudinal connectivity, providing opportunities to move along and between habitats. 	
						 Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	
		BFA3-7	Maintain instream habitats and improve the condition of billabongs connected around bankfull	Bankfull	Winter / Spring	 Increase habitat area, including access to large woody debris and overhanging banks for instream biota, and engage floodplain and billabong habitat for frogs and waterbirds 	Short t mediur
						 Helps to disturb and reset aquatic and riparian vegetation communities, important for a range of diverse habitat types for birds, frogs and platypus 	
						 Provides flow cues for platypus behaviours, such as choice of burrow sites 	
						 Entrains and transports organic matter and sediment that has accumulated in pools and the upper channel, improving habitat quality for platypus. 	
		BFA3-8	Reconnect the floodplain and floodplain billabongs with the instream channel Maintain wetland/billabong species and	Overbank	Winter / Spring	 Improves the frequency and extent of flooding in floodplain wetlands and billabongs. 	Short t mediur
			communities			 Provides water for flood- tolerant vegetation such as River Red Gum 	
						 Provides wetted habitat for waterbird and frog species who don't necessarily require instream habitat 	

se	Description of change
ว า	
כ ר ר	
כ ו	

Table A.4 : Reach 4 – Watts River to Yering Gorge ecological objectives.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
Geomorphology	Maintain channel dimensions and form	G4-1	Maintain existing channel dimensions and minimise bed and bank erosion Limit frequency and duration of flows above scouring thresholds	High / bankfull flow	Winter / Spring	Maintain channel features	Mediun Iong
		G4-2	Protect existing substrates Limit frequency and duration of flows above scouring thresholds	Freshes	Throughout year	Prevent any further increase in frequency of flows above scouring thresholds	Mediun Iong
	Rehabilitate lateral connectivity with billabongs connected around bankfull	G4-3	Form and maintain billabongs and meander train	Bankfull flow	Spring	Increased frequency of inundation of billabongs & meander train	Short
	Rehabilitate G4-4 floodplains		Form and maintain floodplain features	Overbank flow	Spring	Increased frequency & duration of inundation of floodplain	Short
Macroinvertebrates R	Rehabilitate	M4-1	Access to and area of riffle and edge	Low flow	Summer / Winter	- Expect improvement in	Short to
	community to comply	M4-2	additional habitat area in Winter/Spring)	Low flow	Winter / Spring	comply with SEPP objectives,	
	with Yarra SEPP Schedule F7 objectives	M4-3	Disturbance to scour biofilm & sediment from LWD	Freshes	Throughout year	reach.	
Fish	Maintain or improve	F4-1	F4-1 Maintain hydraulic habitat (i.e. pool, riffle,		Summer / Autumn	Maintenance of hydraulic	Short to
	populations of native indigenous fish (river	F4-2	- run) and passage for local movement	Low flow	Winter / Spring	- nabitat, Localised movements	mealun
	blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias, spotted galaxias), and comply with Yarra SEPP Schedule F7 objectives.	F4-3	Flush accumulated fine sediments to maintain or improve quality and availability of habitats	Freshes / High flow	Winter / Spring	Accumulated fine sediments scoured from the river bed	Short to medium
		F4-4	Facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches	Freshes / High flow	Spring / Early Summer	Upstream immigration from downstream river reaches	Short
		F4-5	Cue downstream spawning migration by Australian grayling to lower river reaches.	High flow	Autumn	Downstream migration to lower river reaches to spawn	Short

se	Description of change
n to	Current and future stormwater runoff may be contributing to flashier flows that scour the channel boundary. Revised wording of 'Function' to include reference to 'limit frequency and duration of flows above scouring thresholds'.
n to	Increased stormwater runoff from impervious areas may exacerbate bank stability. Revised wording of 'Function' to 'protect existing substrates' and 'limit frequency and duration of flows above scouring thresholds'.
	No change from SKM (2012)
	No change from SKM (2012)
) 1	Modified low flow objective and related 'Function' so as to capture assumed changes in Summer / Autumn and Winter / Spring macroinvertebrate biomass linked to inundation of habitat areas.
ว า	Rewritten objectives and revised list of fish species. No longer include mountain galaxias as they have not recently been surveyed in this reach. Split low flow
כ ר	objective to distinguish Summer / Autumn and Winter / Spring low flow components.
	Changed objective so that is it more explicit as to the species and timing of migration. Upstream movement of diadromous fishes occurs over a broad time frame (e.g. August to February), with greatest richness of species migrating around September-November (McDowall & Eldon. 1980, Sloane 1984, Zampatti et al. 2003)
	Revised wording of objective and timing of high flow (from Autumn / Winter to Autumn). Australian grayling undertakes downstream migrations to spawn between late March and May (Koster et al. 2017, Koster et al. 2013)

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respons time						
		F4-6	Cue downstream migration by tupong to the sea to spawn	Freshes / High flow	Late Autumn / Winter	 Downstream migration to the sea to spawn 	Short						
		F4-7	Cue downstream migration by eels to the sea to spawn	Freshes / High flow	Throughout year, especially late Summer	 Downstream migration to the sea to spawn 	Short						
Vegetation	Maintain or improve in-stream & riparian vegetation extent, structure &	V4-1	Provide shallow, permanently inundated in- stream environments all year Dry low- and medium-level banks to provide hydrological complexity	Low flow	Summer / Autumn	Maintain or improve in-stream and riparian vegetation characteristics such as species richness and abundance,	Short						
	composition	V4-2	Prolonged inundation of instream channel, lower bench and bars to disadvantage terrestrial species and prevent their colonizing of instream channel	Low flow	Winter / Spring	 structural complexity, vertical zonation & spatial extent. Specifically: Maintain or improve submerged and semi-emergent vegetation instream, such as Water Ribbons 							
			Inundate low-level benches to ensure vertical zonation of inundation-tolerant fringing vegetation										
		V4-3	Wet medium-level banks to provide periodically inundated environments at various levels in-stream	Fresh	Summer / Autumn	2) Maintain or improve fringing beds of Cumbungi and rehabilitate or facilitate the							
			Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation	development of new beds of Common Reed and other diverse rush and sedge assemblages in the riparian									
			detritus downstream Provide hydrological complexity		zone	zone							
								V4-4	Wet higher benches to maintain fringing aquatic vegetation and ensure vertical zonation of fringing vegetation	Fresh	Winter / Spring (June/July)		
			Facilitate dispersion of propagules										
		V4-5	Promote flood-tolerant vegetation higher on banks	Fresh	Winter / Spring (June to September)								
		V4-6	Provide deeper, permanently inundated in- stream environments over Winter/Spring	High flow	Winter / Spring								
			Inundate medium-level banks to provide periodically inundated environments at higher levels in-stream										
			Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation-intolerant riparian or terrestrial vegetation										
			Transport plant propagules and plant detritus downstream										

se	Description of change
	New objective to cue downstream migration by tupong. Tupong undertake downstream migrations between late May and August, associated with high river flows (Crook et al. 2010).
	New objective to cue downstream migration by eels. Eels undertake downstream migrations throughout the year, with an increase in frequency over Summer and following high river flows (Crook et al. 2014).
	Restructured objectives and related 'Functions' and 'Expected responses' to reflect different vegetation components/habitats (in-stream, riparian, billabong/floodplain and terrestrial) and their contrasting watering requirements to promote or discourage each component. Rationalisation of billabong/floodplain objectives and associated 'Functions' and 'Flow components'

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon: time
			Provide hydrological complexity (and therefore vegetation zonation)				
	Maintain inundation- tolerant vegetation in riparian zone at top of bank	V4-7	Maintain periodically wetted areas on top- of-bank to promote inundation-tolerant riparian vegetation on upper levels of bank and lower riparian zone Provide hydrological complexity (and therefore vegetation zonation)	Bankfull	Winter / Spring	 Maintain inundation-tolerant riparian species, such as Swamp Paperbark, at top-of bank 	Medium
	Maintain or improve billabongs and	V4-8	Inundate specific billabongs	Bankfull and/or Overbank	Winter / Spring	Improve the ecological structure and ecological	Medium Long
	floodplains	V4-9	Inundate areas of the floodplain in order to promote growth of inundation-tolerant taxa (e.g. rushes, reeds, sedges) over terrestrial taxa (e.g. Silver Wattle, Tree Violet) on the top-of-bank, on the floodplain and in billabongs	Bankfull and/or Overbank	Winter / Spring	 function of specific billabongs (likely to require complementary works) Improve the ecological structure and ecological function of the floodplain more generally (contingent upon ability to inundate large areas of floodplain without damage to infrastructure) Improve lateral connectivity between river and floodplain/billabong habitats (likely to require complementary works – see Appendix B) 	
Platypus	Maintain/improve current status of population	P4-1	Maintain platypus habitat, maintain longitudinal connectivity across riffle areas, minimise predation risk, allow juvenile dispersal, support macroinvertebrate populations.	Low flow	All year	 Maintain habitat quality and food resources for platypuses. 	Short to medium
		P4-2	Maintain minimum pool depth >1m.	Low flow (extreme)	Extended dry periods (drought)	Maintain refuge areas during drought.	Short to medium
		P4-3	Promote habitat diversity, scour fine sediment, promote macroinvertebrate diversity/abundance.	Freshes	All year	 Improve habitat quality and food resources for platypuses. 	Short to medium
		P4-4	Minimise bank erosion and in-stream sedimentation	Limit flows above scouring thresholds	All year	 Improve habitat quality for platypus food resources (macroinvertebrates) 	Medium
		P4-5	Prevent inundation of breeding burrows	Avoid bankfull or overbank flows	Nov-Feb	Improved reproductive success.	Short
Birds, Frogs and Amenity	Birds – Maintain or improve the species richness and abundance of streamside and wetland populations	BFA4-1	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Summer / Autumn	 Maintain permanent pools with an adequate depth of water for habitat for biota such as macroinvertebrates, an important food source for birds, and frogs Provides disturbance to scour the river bed of sediment and 	Short to medium

se	Description of change
١	
n to	
)	New objectives developed for Platypus,
I	drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016). Maintaining drought refuges probably not
) 1	required in Reaches 4-6 under current flow regimes but may be relevant in future.
)	
1	
1	
) 1	New generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
	Frogs - Maintain diversity and improve the overall abundance and distribution of expected species Amenity - Maintain and/or improve condition					 improve the quality of instream habitat Also provides a suitable range of depths for the growth of instream vegetation 		
	expected species Amenity – Maintain and/or improve condition	BFA4-2		Fresh	Summer / Autumn	 Provides disturbance to scour the river bed of sediment and improve the quality of habitat within the river Provides a suitable depth of water for waterbirds, maintaining the extent of habitat range they can utilise Provides flow variability to maintain a diversity of emergent and riparian vegetation and helps to influence vegetation zonation patterns across the channel, which then provides a variety of habitats. 	Short to medium	
		BFA4-3 Rehabi higher	Rehabilitate and maintain habitat within the higher parts of the river channel	High flow S	Summer / Autumn	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat Sustains longitudinal connectivity, providing opportunities to move along and between habitats for waterbirds. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 		
		BFA4-4	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Winter / Spring	 Increase habitat area for instream flora and fauna including access to large woody debris and overhanging banks. Encourages the die-back of terrestrial vegetation that has encroached down the bank during the Summer low flow period 	Short to medium	
		BFA4-5		Fresh	Winter / Spring	 Provides flow variability to maintain a diversity of emergent and riparian vegetation and to influence vegetation zonation patterns across the channel, which 	Short to medium	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of change
						 provides a variety of habitats for birds Entrains and transports terrestrial organic matter along that has accumulated on benches. 		
		BFA4-6	Rehabilitate and maintain appropriate habitat within the higher parts of the river channel	High flow	Winter / Spring	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat. Sustains longitudinal connectivity, providing opportunities to move along and between habitats. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	Short to medium	
		BFA4-7	Maintain instream habitats and improve the condition of billabongs connected around bankfull	Bankfull	Winter / Spring	 Increase habitat area, including access to large woody debris and overhanging banks for instream biota, and engage floodplain and billabong habitat for frogs and waterbirds Helps to disturb and reset aquatic and riparian vegetation communities, important for a range of diverse habitat types for birds, frogs and platypus Provides flow cues for platypus behaviours, such as choice of burrow sites Entrains and transports organic matter and sediment that has accumulated in pools and the upper channel, improving habitat quality for platypus. 	Short to medium	
		BFA4-8	Reconnect the floodplain and floodplain billabongs with the instream channel Maintain wetland/billabong species and communities	Overbank	Winter / Spring	 Improves the frequency and extent of flooding in floodplain wetlands and billabongs. Provides water for flood- tolerant vegetation such as River Red Gum Provides wetted habitat for waterbird and frog species who don't necessarily require instream habitat 	Short to medium	

Table A.5 : Reach 5– Yering Gorge to Mullum Mullum Creek ecological objectives.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
Geomorphology	Maintain channel dimensions and form	G5-1	Maintain existing channel dimensions and minimise bed and bank erosion Limit frequency and duration of flows above scouring thresholds	High / bankfull flow	Winter / Spring	 Maintain channel features No expansion in vegetated bars & island on riffles 	Medium long
		G5-2	Protect existing substrates Limit frequency and duration of flows above scouring thresholds	Freshes	Throughout year	 Pumping induced rate of rise & fall managed to minimise stranding fauna on riffles Prevent any further increase in frequency of flows above scouring thresholds 	Short
	Rehabilitate lateral connectivity with billabongs on Henley floodplain	G5-3	Form and maintain billabongs and meander train	Bankfull flow	Spring	 Increased frequency of inundation of billabongs & meander train. 	Short
Macroinvertebrates Rehabilitate macroinvertebrate community to comp with Yarra SEPP Schedule F7 object	Rehabilitate	M5-1	Access to and area of riffle and edge habitats (Seasonal variation to inundate	Low flow	Summer / Winter	Expect improvement in macroinvertebrate scores to meet SEPP objectives May require cease to pump in	Short to mediun
	community to comply with Yarra SEPP	M5-2	additional habitat area in Winter/Spring)	Low flow	Winter / Spring		
	Schedule F7 objectives	M5-3	Disturbance to scour biofilm & sediment from riffles & LWD	Freshes	Throughout year	Yering Gorge to protect wetted width of riffle habitat.	
Fish	Maintain or improve populations of native indigenous fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short- headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and native non- indigenous fish (Macquarie perch and Murray cod), and comply with Yarra SEPP Schedule F7 objectives.	F5-1	Maintain hydraulic habitat (i.e. pool, riffle,	Low flow	Summer / Autumn	Maintenance of hydraulic habitat: Localised movements	Short to
		F5-2		Low flow	Winter / Spring		
		F5-3	Flush accumulated fine sediments to maintain or improve quality and availability of habitats, including Macquarie perch spawning habitats	Freshes / High flow	Winter / Spring	Accumulated fine sediments scoured from the river bed	Short to medium
		F5-4	Facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches	Freshes / High flow	Spring / Early Summer	Upstream immigration from downstream river reaches	Short

se	Description of changes
n to	Current and future stormwater runoff may be contributing to flashier flows that scour the channel boundary. Revised wording of 'Function' to include reference to 'limit frequency and duration of flows above scouring thresholds'.
	Increased stormwater runoff from impervious areas may exacerbate bank stability. Revised wording of 'Function' to 'protect existing substrates' and 'limit frequency and duration of flows above scouring thresholds'.
	No change from SKM (2012)
D N	Modified low flow objective and related 'Function' so as to capture assumed changes in Summer / Autumn and Winter / Spring macroinvertebrate biomass linked to inundation of habitat areas.
D N	Rewritten objectives and revised list of fish species. No longer include mountain galaxias as they have not recently been surveyed in this reach. Split low flow objective to distinguish Summer / Autumn and Winter / Spring low flow components.
D n	Revised objective so that it is more explicit to Macquarie Perch and timing. For Macquarie perch, minimize large flow releases and change in flows during November and December which have been shown to negatively influence recruitment. In warmer years extend this period from mid-October to December (Tonkin et al. 2015).
	Changed objective so that is it more explicit as to the species and timing of migration. Upstream movement of diadromous fishes occurs over a broad time frame (e.g. August to February), with greatest richness of species migrating around September-November (McDowall & Eldon. 1980, Sloane 1984, Zampatti et al. 2003)

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
		F5-5	Cue downstream spawning migration by Australian grayling to lower river reaches.	High flow	Autumn	 Downstream migration to lower river reaches to spawn 	Short
		F5-6	Cue downstream migration by tupong to the sea to spawn	Freshes / High flow	Late Autumn / Winter	 Downstream migration to the sea to spawn 	Short
		F5-7	Cue downstream migration by eels to the sea to spawn	Freshes / High Flow	Throughout year, especially late Summer	 Downstream migration to the sea to spawn 	Short
Vegetation	Maintain or improve in- stream & riparian vegetation extent, structure &	V5-1	Provide shallow, permanently inundated in- stream environments all year Dry low- and medium-level banks to provide hydrological complexity	nently inundated in- yearLow flowSummer / AutumnMaintain or improve in-stree and riparian vegetation characteristics such as specificance, structural complexity, vertice zonation & spatial extent. Specifically: 1) Maintain or improve submerged and semi-	Maintain or improve in-stream and riparian vegetation characteristics such as species richness and abundance,	Short	
	composition	V5-2	Prolonged inundation of instream channel, lower bench and bars to disadvantage terrestrial species and prevent their colonizing of instream channel Inundate low-level benches to ensure vertical zonation of inundation-tolerant fringing vegetation	Low flow	Winter / Spring	zonation & spatial extent. Specifically: 1) Maintain or improve submerged and semi- emergent vegetation in- stream, such as Water Ribbons.	
		V5-3	Wet medium-level banks to provide periodically inundated environments at various levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	Fresh	Summer / Autumn	2) Maintain or improve fringing beds of Cumbungi and rehabilitate or facilitate the development of new beds of Common Reed and other diverse rush and sedge assemblages in the riparian zone	
		V5-4	Wet higher benches to maintain fringing aquatic vegetation and ensure vertical zonation of fringing vegetation Facilitate dispersion of propagules	Fresh	Winter / Spring (June/July)		
		V5-5	Promote flood-tolerant vegetation higher on banks	Fresh	Winter / Spring (June to September)		
		V5-6	Provide deeper, permanently inundated in- stream environments over Winter/Spring	High flow	Winter / Spring		

se	Description of changes
	Revised wording of objective and timing of high flow (from Autumn / Winter to Autumn). Australian grayling undertakes downstream migrations to spawn between late March and May (Koster et al. 2017, Koster et al. 2013)
	New objective to cue downstream migration by tupong. Tupong undertake downstream migrations between late May and August, associated with high river flows (Crook et al. 2010).
	New objective to cue downstream migration by eels. Eels undertake downstream migrations throughout the year, with an increase in frequency over Summer and following high river flows (Crook et al. 2014).
	Restructured objectives and related 'Functions' and 'Expected responses' to reflect different vegetation components/habitats (in-stream, riparian, billabong/floodplain and terrestrial) and their contrasting watering requirements to promote or discourage each component. Rationalisation of billabong/floodplain objectives and associated 'Functions' and 'Flow components'.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes	
			Inundate medium-level banks to provide periodically inundated environments at higher levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)						
	Maintain or improve inundation-tolerant vegetation in riparian zone at top of bank	V5-7	Maintain periodically wetted areas on top- of-bank to promote inundation-tolerant riparian vegetation on upper levels of bank and lower riparian zone Provide hydrological complexity (and therefore vegetation zonation)	Bankfull	Winter / Spring	 Maintain or improve inundation-tolerant riparian species, such as Swamp Paperbark, at top-of bank 	Medium		
	Maintain or improve billabongs and	V5-8	Inundate specific billabongs	Bankfull and/or Overbank	Winter / Spring	Improve the ecological structure and ecological	Medium to Long	-	
	floodplains (of limited importance in this reach)	V5-9	Inundate areas of the floodplain in order to promote growth of inundation-tolerant taxa (e.g. rushes, reeds, sedges) over terrestrial taxa (e.g. Silver Wattle, Tree Violet) on the top-of-bank, on the floodplain and in billabongs	Bankfull and/or Overbank	Winter / Spring	 function of specific billabongs (likely to require complementary works) Improve the ecological structure and ecological function of the floodplain more generally (contingent upon ability to inundate large areas of floodplain without damage to infrastructure) Improve lateral connectivity between river and floodplain/billabong habitats (likely to require complementary works; see Appendix B) 	gical Long billabongs Long orks) gical ogical ogical opical ogical dplain more gical ent upon gical large areas orks ut damage to ginnectivity innectivity ginabitats		
Water quality	Minimise risk of stratification and low dissolved oxygen in pools through Yering and Warrandyte gorges	W5-1	Fish and macroinvertebrate health	Low flow	All year	Pools fully mixed at all times	Short	No change from SKM (2012)	
Platypus	Maintain/improve current status of population	P5-1	Maintain platypus habitat, maintain longitudinal connectivity across riffle areas, minimise predation risk, allow juvenile dispersal, support macroinvertebrate populations.	Low flow	All year	 Maintain habitat quality and food resources for platypuses. 	Short to medium	New objectives developed for Platypus, drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016). Maintaining drought refuges probably not	
		P5-2 Maintain minimum pool depth >1m.		Low flow (extreme)	Extended dry periods (drought)	 Maintain refuge areas during drought. 	Short to medium	required in Reaches 4-6 under current flow regimes but may be relevant in future.	
		P5-3	Promote habitat diversity, scour fine sediment, promote macroinvertebrate diversity/abundance.	Freshes	All year	 Improve habitat quality and food resources for platypuses. 	Short to medium		

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
		P5-4	Minimise bank erosion and in-stream sedimentation	Limit flows above scouring thresholds	All year	 Improve habitat quality for platypus food resources (macroinvertebrates) 	Mediun
		P5-5	Prevent inundation of breeding burrows	Avoid bankfull or overbank flows	Nov-Feb	 Improved reproductive success. 	Short
Birds, Frogs and Amenity	Birds - Maintain or improve the species richness and abundance of streamside and wetland populations Frogs - Maintain diversity and improve the overall abundance and distribution of expected species	BFA5-1	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Summer / Autumn	 Maintain permanent pools with an adequate depth of water for habitat for biota such as macroinvertebrates, an important food source for birds, and frogs Provides disturbance to scour the river bed of sediment and improve the quality of instream habitat Also provides a suitable range of depths for the growth of in- stream vegetation 	Short to mediun
	Amenity - Maintain and/or improve condition	hity - Maintain ir improve ition BFA5-2		Fresh	Summer / Autumn	 Provides disturbance to scour the river bed of sediment and improve the quality of habitat within the river Provides a suitable depth of water for waterbirds, maintaining the extent of habitat range they can utilise Provides flow variability to maintain a diversity of emergent and riparian vegetation and helps to influence vegetation zonation patterns across the channel, which then provides a variety of habitats. 	Short to mediun
	E	BFA5-3	Rehabilitate and maintain habitat within the higher parts of the river channel	High flow	Summer / Autumn	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat Sustains longitudinal connectivity, providing opportunities to move along and between habitats for waterbirds. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	Short to
		BFA5-4	Maintain access to good quality physical habitat, provide good water quality, and	Low flow	Winter / Spring	Increase habitat area for instream flora and fauna	Short to mediun

se	Description of changes
ו 	
כ ו	New generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)
2	
2 1	
) 1	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes		
					support the growth of instream vegetation, an important source of food resources and habitat			 including access to large woody debris and overhanging banks. Encourages the die-back of terrestrial vegetation that has encroached down the bank during the Summer low flow period 		
		BFA5-5		Fresh	Winter / Spring	 Provides flow variability to maintain a diversity of emergent and riparian vegetation and to influence vegetation zonation patterns across the channel, which provides a variety of habitats for birds Entrains and transports terrestrial organic matter along that has accumulated on benches. 	Short to medium			
		BFA5-6	Rehabilitate and maintain appropriate habitat within the higher parts of the river channel	High flow	Winter / Spring	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat. Sustains longitudinal connectivity, providing opportunities to move along and between habitats. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	Short to medium			
		BFA5-7	Maintain instream habitats and improve the condition of billabongs connected around bankfull	Bankfull	Winter / Spring	 Increase habitat area, including access to large woody debris and overhanging banks for instream biota, and engage floodplain and billabong habitat for frogs and waterbirds Helps to disturb and reset aquatic and riparian vegetation communities, important for a range of diverse habitat types for birds, frogs and platypus Provides flow cues for platypus behaviours, such as choice of burrow sites Entrains and transports organic matter and sediment that has accumulated in pools and the 	Short to medium			

Final Report

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes
						upper channel, improving habitat quality for platypus.		
		BFA5-8 Reconnect the floodplain and floodplain billabongs with the instream channel Maintain wetland/billabong species and communities	Overbank	Winter / Spring	Improves the frequency and extent of flooding in floodplain wetlands and billabongs.	Short to medium		
					tolerant vegetation such as River Red Gum			
						Provides wetted habitat for waterbird and frog species who don't necessarily require instream habitat		

Table A.6 : Reach 6– Mullum Mullum Creek to Dights Falls ecological objectives.

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Respon time
Geomorphology	Maintain channel dimensions and form	G6-1	Maintain existing channel dimensions and minimise bed and bank erosion Limit frequency and duration of flows above scouring thresholds	High / bankfull flow	Winter / Spring	Maintain channel features	Mediun Iong
		G6-2	Protect existing substrates Limit frequency and duration of flows above scouring thresholds	Freshes	Throughout year	 Prevent any further increase in frequency of flows above scouring thresholds 	Mediun Iong
	Rehabilitate lateral connectivity with billabongs connected around bankfull	G6-3	Form and maintain billabongs and meander train	Bankfull / overbank flow	Spring	 Increased frequency of inundation of billabongs & meander train 	Short
Macroinvertebrates	Rehabilitate	M6-1	Access to and area of LWD, riffles & edge habitats (Seasonal variation to inundate	Low flow	Summer / Winter	 Achieve maximum possible macroinvertebrate score to the 	Short to mediur
	community to comply with Yarra SEPP	M6-2	additional habitat area in Winter/Spring)	Low flow	Winter / Spring	extent possible given level of urban impact	
	Schedule F7 objectives	M6-3	Disturbance to scour biofilm & sediment from riffles & LWD	Freshes	Throughout year		
Fish	Maintain or improve	F6-1	Maintain hydraulic habitat (i.e. pool, riffle, run) and passage for local movement	Low flow	Summer / Autumn	Maintenance of hydraulic habitat; Localised movements	Short to medium
	indigenous fish (river blackfish, Australian smelt, ornate galaxias, Australian gravling,	F6-2	_	Low flow	Winter / Spring		
	short-finned eel, short- headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), and native non- indigenous fish (Macquarie perch and	F6-3	Flush accumulated fine sediments to maintain or improve quality and availability of habitats, including Macquarie perch spawning habitats.	Freshes / High flow	Winter / Spring	Accumulated fine sediments scoured from the river bed	Short to medium
	Murray cod), and comply with Yarra SEPP Schedule F7 objectives.	F6-4	Facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) and adult anadromous (short-headed lamprey, pouched lamprey) fishes from downstream river reaches	Freshes / High flow	Spring / early Summer	Upstream immigration from the sea	Short
		F6-5	Cue upstream spawning migration by short-headed lamprey from the sea	Freshes / High flow	Late Winter to Spring	Upstream immigration from the sea	Short

Description of changes
Current and future stormwater runoff may be contributing to flashier flows that scour the channel boundary. Revised wording of 'Functions' to include reference to 'limit frequency and duration of flows above scouring thresholds'.
Increased stormwater runoff from impervious areas may exacerbate bank stability. Revised wording of 'Functions' to 'protect existing substrates' and 'limit frequency and duration of flows above scouring thresholds'.
No change from SKM (2012)
Modified low flow objective and related 'Functions' and 'Expected responses' so as to capture assumed changes in Summer / Autumn and Winter / Spring macroinvertebrate biomass linked to inundation of habitat areas.
Rewritten objectives and revised list of fish species. No longer include mountain galaxias as they have not recently been surveyed in this reach. Split low flow objective to distinguish Summer / Autumn and Winter / Spring low flow components.
Revised objective so that it is more explicit to Macquarie Perch and timing. For Macquarie perch, minimize large flow releases and change in flows during November and December which have been shown to negatively influence recruitment. In warmer years extend this period from mid-October to December (Tonkin et al. 2015).
Changed objective so that is it more explicit as to the species and timing of migration. Upstream movement of diadromous fishes occurs over a broad time frame (e.g. August to February), with greatest richness of species migrating around September-November (McDowall & Eldon. 1980, Sloane 1984, Zampatti et al. 2003)

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes
		F6-6	Cue upstream spawning migration by pouched lamprey from the sea	Freshes / High flow	Winter / Spring	Upstream immigration from the sea	Short	
	F	F6-7	Cue downstream spawning migration by Australian grayling to lower river reaches.	High flow	Autumn	 Downstream migration to lower river reaches to spawn 	Short	Revised wording of objective and timing of high flow (from Autumn / Winter to Autumn). Australian grayling undertakes downstream migrations to spawn between late March and May (Koster et al. 2017, Koster et al. 2013)
		F6-8	Cue downstream migration by tupong to the sea to spawn	Freshes / High flow	Late Autumn / Winter	 Downstream migration to the sea to spawn 	Short	New objective to cue downstream migration by tupong. Tupong undertake downstream migrations between late May and August, associated with high river flows (Crook et al. 2010).
		F6-9	Cue downstream migration by eels to the sea to spawn	Freshes / High Flow	Throughout year, especially late Summer	 Downstream migration to the sea to spawn 	Short	New objective to cue downstream migration by eels. Eels undertake downstream migrations throughout the year, with an increase in frequency over Summer and following high river flows (Crook et al. 2014).
Vegetation	Maintain or improve in- stream & riparian	V6-1	Provide shallow, permanently inundated in- stream environments all year	Low flow	Summer / Autumn	 Maintain or improve in-stream and riparian vegetation characteristics such as species richness and abundance, structural complexity, vertical zonation & spatial extent. Specifically: Maintain or improve submerged and semi- emergent vegetation in- stream, such as Water Ribbons Maintain or improve fringing beds of Cumbungi and rehabilitate or facilitate the 	Short	Restructured objectives and related 'Functions' and 'Expected responses' to
	vegetation extent, structure &		Dry low- and medium-level banks to provide hydrological complexity					reflect different vegetation components/habitats (in-stream, riparian, billabong/floodplain and terrostrial) and
CC	composition	V6-2	Prolonged inundation of instream channel, lower bench and bars to disadvantage terrestrial species and prevent their colonizing of instream channel Inundate low-level benches to ensure vertical zonation of inundation-tolerant fringing vegetation	Low flow	Winter / Spring			billabong/floodplain and terrestrial) and their contrasting watering requirements to promote or discourage each component. Rationalisation of billabong/floodplain objectives and associated 'Functions' and 'Flow components'.
		V6-3	Wet medium-level banks to provide periodically inundated environments at various levels in-stream	Fresh	Summer / Autumn			
			Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation			development of new beds of Common Reed and other diverse rush and sedge		
		Transport plant propagules and plant			assemblages in the riparian zone			
			Provide hydrological complexity (and therefore vegetation zonation)					
	V6-4	V6-4	Wet higher benches to maintain fringing aquatic vegetation and ensure vertical zonation of fringing vegetation Facilitate dispersion of propagules	Fresh	Winter / Spring (June/July)			
		V6-5	Promote flood-tolerant vegetation higher on banks	Fresh	Winter / Spring (June to September)			

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes
		V6-6	Provide deeper, permanently inundated in- stream environments over Winter/Spring Inundate medium-level banks to provide periodically inundated environments at higher levels in-stream Promote inundation-tolerant aquatic or riparian vegetation and inhibit inundation- intolerant riparian or terrestrial vegetation Transport plant propagules and plant detritus downstream Provide hydrological complexity (and therefore vegetation zonation)	High flow	Winter / Spring			
	Maintain or improve inundation-tolerant vegetation in riparian zone at top of bank	V6-7	Maintain periodically wetted areas on top- of-bank to promote inundation-tolerant riparian vegetation on upper levels of bank and lower riparian zone	Bankfull	Winter / Spring	 Maintain or improve inundation-tolerant riparian species, such as Swamp Paperbark, at top-of bank 	Medium	
	Maintain or improve V6-8 billabongs and	V6-8	Inundate specific billabongs	Bankfull and/or Overbank	Winter / Spring	 Improve the ecological structure and ecological function of specific billabongs (likely to require complementary works) Improve the ecological structure and ecological function of the floodplain more generally (contingent upon ability to inundate large areas of floodplain without damage to infrastructure) Improve lateral connectivity between river and floodplain/billabong habitats (likely to require complementary works: see Appendix B) 	Medium to Long	
	floodplains (critically important for billabongs in this reach)	V6-9	Inundate areas of the floodplain in order to promote growth of inundation-tolerant taxa (e.g. rushes, reeds, sedges) over terrestrial taxa (e.g. Silver Wattle, Tree Violet) on the top-of-bank, on the floodplain and in billabongs	Bankfull and/or Overbank	Winter / Spring			
Water quality	Minimise risk of stratification and low dissolved oxygen in pools upstream of Chandler Highway	W6-1a	Fish and macroinvertebrate health	Low flow	All year	Pools fully mixed at all times	Short	No change from SKM (2012)
	Minimise risk of stratification and low	W6-1b	Fish and macroinvertebrate health	Low flow	All year	Pools fully mixed at all times	Short	No change from SKM (2012)
	dissolved oxygen in Dights Falls Weir Pool			Freshes	All year	Mix pools if stratification does occur	Short	No change from SKM (2012)
Platypus	Improve current status of population	P6-1	Maintain platypus habitat, maintain longitudinal connectivity across riffle areas, minimise predation risk, allow juvenile dispersal, support macroinvertebrate populations.	Low flow	All year	 Maintain habitat quality and food resources for platypuses. 	Short to medium	New objectives developed for Platypus, drawing upon insights from platypus surveys and conceptual models of platypus flow requirements (Jacobs et al. 2016).

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes
		P6-2	Maintain minimum pool depth >1m.	Low flow (extreme)	Extended dry periods (drought)	 Maintain refuge areas during drought. 	Short to medium	Maintaining drought refuges probably not required in Reaches 4-6 under current flow
	P6-3	Promote habitat diversity, scour fine sediment, promote macroinvertebrate diversity/abundance.	Freshes	All year	 Improve habitat quality and food resources for platypuses. 	Short to medium		
		P6-4	Minimise bank erosion and in-stream sedimentation	Limit flows above scouring thresholds	All year	 Improve habitat quality for platypus food resources (macroinvertebrates) 	Medium	
		P6-5	Prevent inundation of breeding burrows	Avoid bankfull or overbank flows	Nov-Feb	 Improved reproductive success. 	Short	
Birds, Frogs and Amenity	Birds - Maintain or improve the species richness and abundance of streamside and wetland populations	BFA6-1	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Summer / Autumn	 Maintain permanent pools with an adequate depth of water for habitat for biota such as macroinvertebrates, an important food source for birds, and frogs Provide disturbance to scour 	Short to medium	New generic ecological objectives have been added for Birds, Frogs and Amenity as documented in the Yarra River EWMP (Jacobs 2017f)
	Frogs – Maintain diversity and improve the overall abundance and distribution of expected species					the river bed of sediment and improve the quality of instream habitat		
						 Provide a suitable range of depths for the growth of in- stream vegetation 		
	Amenity - Maintain and/or improve condition	BFA6-2		Fresh	Summer / Autumn	 Provide disturbance to scour the river bed of sediment and improve the quality of habitat within the river 	Short to medium	
						 Provide a suitable depth of water for waterbirds, maintaining the extent of habitat range they can utilise 		
					 Provide flow variability to maintain a diversity of emergent and riparian vegetation and helps to influence vegetation zonation patterns across the channel, which then provides a variety of habitats. 			
		BFA6-3	Rehabilitate and maintain habitat within the higher parts of the river channel	High flow	Summer / Autumn	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat 	Short to medium	
						 Sustains longitudinal connectivity, providing opportunities to move along and between habitats for waterbirds. 		

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes
						 Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 		
		BFA6-4	Maintain access to good quality physical habitat, provide good water quality, and support the growth of instream vegetation, an important source of food resources and habitat	Low flow	Winter / Spring	 Increase habitat area for instream flora and fauna including access to large woody debris and overhanging banks. Encourages the die-back of terrestrial vegetation that has encroached down the bank during the Summer low flow period 	Short to medium	
		BFA6-5		Fresh	Winter / Spring	 Provide flow variability to maintain a diversity of emergent and riparian vegetation and to influence vegetation zonation patterns across the channel, which provides a variety of habitats for birds Moves terrestrial organic matter along that has accumulated on benches. 	Short to medium	
		BFA6-6	Rehabilitate and maintain appropriate habitat within the higher parts of the river channel	High flow	Winter / Spring	 Entrains and transports sediment along the river improving the quality of, and access to, instream habitat. Sustains longitudinal connectivity, providing opportunities to move along and between habitats. Helps to influence vegetation zonation patterns across the channel, which provides a variety of habitats. 	Short to medium	
		BFA6-7	Maintain instream habitats and improve the condition of billabongs connected around bankfull	Bankfull	Winter / Spring	 Increase habitat area, including access to large woody debris and overhanging banks for instream biota, and engage floodplain and billabong habitat for frogs and waterbirds Helps to disturb and reset aquatic and riparian vegetation communities, important for a range of diverse habitat types for birds, frogs and platypus 	Short to medium	

Asset	Objective	No.	Function	Flow component	Timing	Expected response	Response time	Description of changes
						 Provide flow cues for platypus behaviours, such as choice of burrow sites Entrains and transports organic matter and sediment that has accumulated in pools and the upper channel, improving habitat quality for platypus. 		
		BFA6-8	Reconnect the floodplain and floodplain billabongs with the instream channel Maintain wetland/billabong species and communities	Overbank	Winter / Spring	 Improves the frequency and extent of flooding in floodplain wetlands and billabongs. Provide water for flood-tolerant vegetation such as River Red Gum Provide wetted habitat for waterbird and frog species who don't necessarily require instream habitat 	Short to medium	

Appendix B. Complementary management objectives

Table B.1 : Complementary management objectives.

Reach	Asset	Objective	No.	Function	Expected response	Response time
1	Geomorphology	Rehabilitate in-stream habitat	C1-1	Limit sediment sources	 Reduced sediment input from Doctors Creek catchment. Promote Best Practice Guidelines for roading & timber harvesting. Identify specific sediment sources (given impact on reach) & manage appropriately 	Medium
	Water quality	Maintain current water quality to meet Yarra SEPP Schedule F7 objectives	C1-2	Ecological processes & beneficial uses	No decline in current water quality	Short
			C1-3	Limit effect of cold water releases	No detrimental impacts of cold water releases from reservoir	Short
	Platypus	Maintain/improve current status of population	C1-4	Education	Increased public awareness of impacts of litter and enclosed yabby traps.	Medium
2	Water Quality	Maintain current water quality to meet Yarra SEPP Schedule F7 objectives	C2-1	Ecological processes & beneficial uses	 No decline in current water quality. Implementation of catchment strategies to limit stock access, agricultural runoff & septic tank effluent inputs to river to reduce nutrient & sediment levels & limit excessive algal growth. 	Short to medium
3	Macroinvertebrates	Maintain and rehabilitate current macroinvertebrate community to comply with Yarra SEPP Schedule F7 objectives	C3-1	Reintroduce LWD to channel	 LWD reintroduction should be undertaken in conjunction with fencing & revegetation of riparian zone 	Short to medium
	Vegetation	Rehabilitate billabong vegetation	C3-2	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence meander train (billabongs / floodplain located close to channel), remove stock, limit if possible browsing by feral animals (especially deer) & revegetate with species appropriate for the EVC to take greatest advantage of provision of bankfull flows. Consider targeted removal of levees to take advantage of bankfull or overbank flows for individual billabongs. 	Medium to Long
	Vegetation	Rehabilitate floodplain vegetation	C3-3	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence, remove stock and limit if possible browsing by feral animals (especially deer) & revegetate floodplain with species appropriate for the EVC & remove levees to take advantage of overbank flows. 	Medium to Long
	Water Quality	Improve water quality to meet Yarra SEPP Schedule F7 objectives	C3-4	Ecological processes & beneficial uses	 Increased nutrient compliance with SEPP objectives. Implementation of catchment strategies to reduce stock access, agricultural runoff & localised urban stormwater inputs to river to reduce nutrient levels & limit excessive algal growth. 	Medium
	Platypus	Maintain/improve current status of population	C3-5	Habitat enhancement	 Improve riparian zone (>20 m) through stock exclusion, weed removal, native revegetation to improve habitat for platypuses and macroinvertebrates. 	Medium to Long
4	Geomorphology / Macroinvertebrates	Maintain channel dimensions and form Rehabilitate macroinvertebrate community to comply with Yarra SEPP Schedule F7	C4-1	Reduce direct connectedness to impervious surfaces in urban areas	 Maintain channel features, prevent any further increase in frequency of flows above scouring thresholds. LWD reintroduction to be undertaken in conjunction with fencing & revegetation of riparian zone. 	Short to medium
		objectives	C4-2	Reintroduce LWD to channel		
	Water Quality	Improve water quality to meet Yarra SEPP Schedule F7	C4-3	Ecological processes & beneficial uses	 Increased nutrient compliance with SEPP objectives. Implementation of catchment strategies to reduce stock access, agricultural runoff & localised urban stormwater inputs to river to reduce nutrient levels & limit excessive algal growth. 	Medium to long
	Vegetation	Rehabilitate billabong vegetation	C4-4	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence meander train (billabongs / floodplain located close to channel), remove stock, limit if possible browsing by feral animals (especially deer) & revegetate with species appropriate for the EVC to take greatest advantage of provision of bankfull flows. Consider targeted removal of levees to take advantage of bankfull or overbank flows for individual billabongs. 	Medium to Long
		Rehabilitate floodplain vegetation	C4-5	Revegetation, grazing/browsing control (including of feral animals	 Complementary works required to fence, remove stock, limit if possible browsing by feral animals (especially deer) & revegetate floodplain with species appropriate for the EVC & remove levees to take advantage of overbank flows. 	

Reach	Asset	Objective	No.	Function	Expected response	Response time
				such as deer), possible levee removal		
	Platypus	Maintain/improve current status of population	C4-6	Habitat enhancement	 Improve riparian zone (>20 m) through stock exclusion, weed removal, native revegetation to improve habitat for platypuses and macroinvertebrates. 	Medium to Long
5	Geomorphology / Macroinvertebrates	Maintain channel dimensions and form Rehabilitate macroinvertebrate community to comply with Yarra SEPP Schedule F7	C5-1	Reduce direct connectedness to impervious surfaces in urban areas	 Maintain channel features, prevent any further increase in frequency of flows above scouring thresholds. LWD reintroduction to be undertaken in conjunction with fencing & revegetation of riparian zone. 	Short to medium
		objectives		Reintroduce LWD to channel		
	/egetation Rehabilitate billabong vegetation (of limited importance in this reach)		C5-3	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence meander train (billabongs / floodplain located close to channel), remove stock, limit if possible browsing by feral animals (especially deer) & revegetate with species appropriate for the EVC to take greatest advantage of provision of bankfull flows. Consider targeted removal of levees to take advantage of bankfull or overbank flows for individual billabongs. 	Medium to Long
		Rehabilitate floodplain vegetation (of limited importance in this reach)	C5-4	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence, remove stock, limit if possible browsing by feral animals (especially deer) & revegetate floodplain with species appropriate for the EVC & remove levees to take advantage of overbank flows. 	
	Water Quality	Improve water quality to meet Yarra SEPP Schedule F7 objectives (nutrients and turbidity)	C5-5	Ecological processes, fish health & primary contact beneficial use	 Increase nutrient compliance with SEPP objectives. Continue to improve management of Sewerage Plant effluent to river, septic tank management & urban stormwater to limit nutrient levels & excessive algal growth. 	Medium to long
	Platypus	Maintain/improve current status of population	C5-6	Improve water quality	 Reduce sediment input from tributaries to improve water quality in Yarra River. Employ WSUD to prevent further increases to catchment DCI with urban development. 	Medium to long
6	Geomorphology / Macroinvertebrates	Maintain channel dimensions and form Rehabilitate macroinvertebrate community to comply with Yarra SEPP Schedule F7	C6-1	Reduce direct connectedness to impervious surfaces in urban areas	 LWD reintroduction to be undertaken in conjunction with fencing & revegetation of riparian zone (see V6-4). 	Short to medium
		objectives	C6-2	Reintroduce LWD to channel		
	Vegetation	Rehabilitate billabong vegetation	C6-3	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence meander train (billabongs / floodplain located close to channel), remove stock, limit if possible browsing by feral animals (especially deer) & revegetate with species appropriate for the EVC to take greatest advantage of provision of bankfull flows. Consider targeted removal of levees to take advantage of bankfull or overbank flows for individual billabongs. 	Medium to Long
	Vegetation	Rehabilitate floodplain vegetation	C6-4	Revegetation, grazing/browsing control (including of feral animals such as deer), possible levee removal	 Complementary works required to fence, remove stock, limit if possible browsing by feral animals (especially deer) & revegetate floodplain with species appropriate for the EVC & remove levees to take advantage of overbank flows. 	
	Water Quality	Improve water quality to meet Yarra SEPP Schedule F7 objectives (Nutrients, turbidity & bacteriological),	C6-5	Ecological processes, fish health & primary contact beneficial use	 Reduce effective catchment imperviousness in tributary streams. Increase nutrient & suspended solids compliance with SEPP objectives through improved stormwater management & reduced sewerage overflows 	Medium to long
	Platypus	Maintain/improve current status of population	C6-6	Improve water quality	 Reduce sediment input from tributaries to improve water quality in Yarra River. Employ WSUD to reduce catchment DCI with urban development. 	Medium to long

Appendix C. Summary Flow Recommendations

Season	Flow	Wet/Avg/Dry	Reach							
			1	2	3	4	5	6		
Summer / Autumn	Low flow	Wet/Avg	10 ML/day	80 ML/day	Min 120 ML/day at Woori	Min 200 ML/day	Min 200 ML/day	Min 300 – 450 ML/day		
(Dec- May)		Dry			Yallock and 150 ML/day at Everard Park					
	Fresh	Wet/Avg	60 ML/day (4/yr, min 1 day	350 ML/day (3/yr, min 2	350 ML/day at Woori Yallock	Min 450 ML/day (3/yr, min 2	Min 750 ML/day (3/yr, min 2	Min 750 ML/day (3/yr, min 2		
		Dry	at peak)	days at peak)	Park (3/yr, min 2 days at peak)	days at peak)	days at peak)	days at peak)		
	High	Wet/Avg	Not recommended	560 ML/day (1/yr in	900-1100 ML/day to ensure	900-1100 ML/day to ensure	1300 ML/day (1/yr in Apr/May,	1300 ML/day (1/yr in		
		Dry		Apr/May, must occur 2 in 3 yrs, min 7 day duration)	at Chandler Hwy (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 days at peak, Event 14 days duration)	at Chandler Hwy (1/yr in Apr/May, must occur 2 in 3 yrs, min 7 days at peak, Event 14 days duration)	days at peak)	Apr/May, must occur 2 in 3 yrs, min 7 days at peak)		
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg	10 ML/day	Min 200-350 ML/day (200 ML/day Jun, 350 ML/day Jul-Nov)	Min 200-350 ML/day (200 Min 200-350 ML/day (200 ML/day Jun, 350 ML/day ML/day Jun, 350 ML/day Jul- Jul-Nov) Nov)		Median 750 ML/day with a min 350 ML/day	Median 750 ML/day with a min 350 ML/day		
		Dry		Min 80-350 ML/day (80 ML/day Jun/Jul, 200 ML/day Jul, 350 ML/day Aug-Oct, 200 ML/day Nov)	Min 80-350 ML/day (80 ML/day Jun/Jul, 200 ML/day Jul, 350 ML/day Aug-Oct, 200 ML/day Nov)	Min 350 ML/day, but may not reach this magnitude until late June or mid July Median 600 ML/day with a r 350 ML/day		Median 600 ML/day with a min 350 ML/day		
	Fresh	Wet/Avg	100 ML/day (3/yr, min 2 day at peak)	700 ML/day (2/yr Jun- Aug, 3 days at peak)	1100 ML/day (Min 700 ML/day) (1/yr in Jun/Jul, min 7 days at peak)	1100 ML/day (1/yr in Jun/Jul, min 7 days at peak)	1300 ML/day (1/yr in Jun/Jul, min 7 days at peak)	1300 ML/day (1/yr in Jun/Jul, min 7 days at peak)		
		Drv	-		1800 ML/day (1/yr in Jun-Sep, min 2 days at peak)	2000 ML/day (1/yr in Jun-Sep, min 2 days at peak)	2500 ML/day (1/yr in Jun-Sep, min 2 days at peak)	2500 ML/day (1/yr in Jun- Sep, min 2 days at peak)		
	High	Wet/Avg	300 ML/day (1/yr or min 1 in 2 yrs, 3 days at peak)	700 ML/day (1/yr in Sep, 14 days duration)	1800 ML/day (1/yr in Sep/Oct, 14 days duration)	2000 ML/day (1/yr in Sep/Oct, 14 days duration)	2500 ML/day (1/yr in Sep/Oct, 14 days duration)	2500 ML/day (1/yr in Sep/Oct, 14 days duration)		
		Dry		Not necessary to deliver bu	t allow to occur naturally					
	Bankfull	Wet/Avg	600 ML/day (1 in 2-5 yrs in June-Sept, 3 days)	2700 ML/day (1 in 2 yrs, 2 days at peak)	4000 ML/day (1/yr, 2 days duration)	5000 ML/day (1/yr, 2 days duration)	5000 ML/day (1/yr, 2 days duration)	11,000 ML/day (1/yr, 2 days duration)		
		Dry		Not expected, but let it occu	ur naturally.					
	Bankfull / Overbank	Wet/Avg	Not recommended	2700 ML/day (1 in 2 yrs, 2 days at peak)	4000-6000 ML/day (1 in 1-2 yrs, 1-2 days duration)	8000-10,000 ML/day (1 in 1-2 yrs, 1-2 days duration)	5000-14,000 ML/day (1/yr, 1-2 days duration)	11,000-16,000 ML/day (1/yr, 1-2 days duration)		
		Dry		Not expected, but let it occu	iccur naturally.					

Table C.1 : Summary of revised flow recommendations. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River		Reach	Upper Yarra Dam to Armstrong	Creek confluence				
Compliance point	Doctors Cree	ek Gauge	Gauge No.	229103					
Season	Flow	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Objective (refer to objectives tables for id		
Summer / Autumn (Dec- May)	Low flow	Wet/Avg/Dry	10 ML/day released from storage provide additional flow and the	10 ML/day released from storage. Inflow from Doctors Creek and local catchment run-off provide additional flow and the required flow variation.					
	Fresh	Wet/Avg	60 ML/day released from storage plus Doctors Creek flow on top of this to provide increased magnitude and variability during average and wet years.	Minimum 4 events delivered + additional events provided by Doctors Creek. One event could be up to 300 ML/day without posing additional risk	Min 1 day at peak, additional duration provided by Doctors Creek.	2.0/0.8	Maintain suitable riffle habitat by periodica vegetation on banks. (G1-2, M1-3, V1-3, P1-3, P1-4, BFA1-2)		
		Dry	60 ML/day	4 events	1 day				
	High	Not recomme	nded						
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg/Dry	10 ML/day released from storage provide additional flow and required Winter / Spring compared to Su) ML/day released from storage. Inflow from Doctors Creek and local catchment run-off ovide additional flow and required flow variation expected with greater tributary flows in 'inter / Spring compared to Summer / Autumn season.					
	Fresh	Wet/Avg	100 ML/day releases from storage with Doctors Creek flow on top of this provide increased magnitude and variability during average and wet years.	Minimum 3 events delivered + additional events provided by Doctors Creek.	Min 2 day at peak, additional duration provided by Doctors Creek.	2.0/0.8	Maintain suitable riffle habitat by periodica vegetation on banks. (G1-2, M1-3, F1-2, V1-3, P1-3, BFA1-5)		
		Dry	100 ML/day	3	2	-			
	High	Wet/Avg/Dry	300 ML/day	Once every year or 1 in 2 years (minimum) Restrict to June-September period.	3 days	2.0/0.8	Scour sediment from pools to increase ha flood-tolerant species and limit encroachm (G1-3, M1-4, F1-2, V1-4, V1-7, P1-3, P1-4		
	Bankfull ¹	Wet/Avg/Dry	600 ML/day	1 in 2-5 years, Restrict to June-Sept period (peak of event prior to Mid October) to mitigate risks to platypus.	3 days	2.0/0.8	Maintain existing channel geometry & pre- (G1-1, V1-5, V1-8, P1-4, P1-5, BFA1-7)		
	Overbank ¹	Not recomme	nded				_		

Table C.2 : Flow recommendations for Reach 1. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

¹Bankfull and Overbank flows could occur at any time (in Summer also)

reference)

r bugs, fish (river blackfish, Australian smelt, short-finned and frogs, maintain drought refuge pool, instream getation.

\1-1)

ally scouring sediment and biofilms, maintain flood-tolerant

river blackfish, Australian smelt, short-finned eel, and ous fish (Macquarie perch and Murray cod) platypus, birds

A1-4)

ally scouring sediment & biofilms, maintain flood-tolerant

abitat availability, provide a disturbance regime to promote ment of terrestrial vegetation and entrain organic material. -4, BFA1-6)

event further vegetation encroachment in channel.

Stream	Yarra River		Reach	Armstrong Creek confluence to	Millgrove		
Compliance point	Millgrove Ga	uge	Gauge No.	229212			
Season	Flow	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Objective (refer to objectives ta
Summer / Autumn (Dec- May)	Low flow	Wet/Avg/Dry	Minimum recommendation of 80 ML/day, allo average and wet years.	w tributaries to provide variation	greater than 80 ML	./day in	Maintain access to habitat for l galaxias, Australian grayling, s tupong, broad-finned galaxias, frogs, maintain drought refuge (M2-1, F2-1, V2-1, P2-1, P2-2,
	Fresh	Wet/Avg	350 ML/day, tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	Minimum 3 events + additional events provided by Tributaries.	Min 2 days at peak. Longer duration flows acceptable in average and wet years.	2.0/0.8	Maintain suitable riffle habitat to flood-tolerant vegetation on ba downstream migration of eels. (G2-3, M2-3, F2-3, F2-6, V2-3,
		Dry	350 ML/day	3 events	2 days		
	High Wet/Avg/Dry		560 ML/day tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	1 (April/May), every year. Must occur 2 in 3 years.	Min 7 day at peak. Longer duration flows acceptable in average and wet years.	2.0/0.8	Trigger downstream spawning migration of eels. May facilitate (F2-4, F2-6, P2-3, BFA2-3)
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg	Minimum recommendation of 200-350 ML/da allow tributaries to provide additional flow and	y (200 ML/day in June transitioni d variation in average and wet yea	ng to 350 ML/day i ars.	n July),	Higher flows increase access to ornate galaxias, Australian gra
		Dry	Minimum recommendation of 80-350 ML/day ML/day June, 200 ML/Day July, 350 ML/day	80	birds and frogs, wet bank vege (M2-2, F2-1, V2-2, P2-1, BFA2		
	Fresh Wet/Avg/D		700 ML/day tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	Minimum 2 events between June and August.	3 days at peak. Longer duration flows acceptable in average and wet years.	2.0/0.8	Maintain suitable riffle habitat to passage, facilitate upstream in common galaxias, tupong) and galaxias, spotted galaxias) fish migration by Tupong and eels on banks and entrain organic ro (G2-3, M2-3, F2-2, F2-3, F2-5,
	High	Wet/Avg	700 ML/day	Minimum 1 event in September, allow to occur naturally at other times.	14 days	2.0/0.8	As per fresh but provides prolo (G2-4, F2-2, F2-3, F2-5, F2-6,
		Dry	Not necessary to deliver but allow to occur na	aturally			
	Bankfull / overbank ¹	Wet/Avg	2700 ML/day. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	1 in 2 years. Expect to occur naturally, not a delivered event.	2 days at peak. Longer duration flows acceptable in average and wet years.	N/A	Maintain existing channel geor channel, entrain organic mater for waterbirds and frogs (G2-1, V2-5, V2-6, P2-4, P2-5,
	-	Dry	Not expected, but let it occur naturally.				

Table C.3 : Flow recommendations for Reach 2. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

¹Bankfull / overbank flows could occur at any time (in Summer also).

ables for id reference)

bugs, fish (river blackfish, Australian smelt, ornate short-finned eel, short-headed lamprey, pouched lamprey, , spotted galaxias & common galaxias) platypus, birds and pools, drying period for bank vegetation.

, BFA2-1)

by periodically scouring sediment & biofilms, maintain anks, provide opportunities for fish movement. Cue

, P2-3, BFA2-2)

migration of Australian Grayling. Cue downstream e juvenile platypus dispersal.

to habitat for bugs, fish (river blackfish, Australian smelt, ayling, short-finned eel, short-headed lamprey, pouched I galaxias, spotted galaxias & common galaxias) platypus, etation.

2-4)

by periodically scouring sediment & biofilms. Provide fish nmigration of juvenile catadromous (short-finned eel, d amphidromous (Australian grayling, broad-finned nes from downstream river reaches, cue downstream to the sea to spawn. Maintain flood-tolerant vegetation material

, F2-6, V2-3, P2-3, BFA2-5)

onged disturbance to favour flood-tolerant vegetation V2-4, P2-3, BFA2-6)

metry & prevent further vegetation encroachment in rial, engage high flow channels and provide wetted habitat

, BFA2-6, BFA2-7)

Stream	Yarra River		Reach	Millgrove to Watts River confluence			
Compliance point	Yarra Grange		Gauge No.	229653			
Season	Flow	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Objective (refer to objectives
Summer / Autumn (Dec- May)	Low flow	Wet/Avg/Dry	Minimum recommendation tributaries to provide addition Tributary inflows will contril	of 120 ML/day at Woori Yallock and 150 I onal flow above the minimum recommend bute to important flow variation.	Maintain access to habitat for galaxias, Australian grayling, lamprey, tupong, broad-finned platypus, birds and frogs, mai (M3-1, F3-1, V3-1, P3-1, P3-2		
	Fresh	Wet/Avg	350 ML/day at Woori	Minimum 3 events	Min 2 days at peak	2.0/0.8	Maintain suitable riffle and LV
		Dry	Yallock and 450 ML/day at Everard Park.	3 events	2 days at peak		and cue downstream migratio
	High	Wet/Avg/Dry	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy.	1 April/May, every year. Must occur 2 in 3 years.	Min 7 days at peak and event should last for 14 days from start to finish.	2.0/0.8	Trigger downstream migratior larvae to sea. May facilitate ju eels (F3-4, F3-6, P3-3, BFA3-3)
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg	Minimum recommendation allow tributaries to provide	of 200-350 ML/day (200 ML/day in June t additional flow and variation in average ar	Higher flows increase access ornate galaxias, Australian gr		
		Dry	Minimum recommendation ML/day June, 200 ML/Day	of 80-350 ML/day with transitional flows ir July, 350 ML/day August – October and 2	n June/July and Novembe 00 ML/day in November)	r (80	lamprey, tupong, broad-finned platypus, birds and frogs, inur (M3-2, F3-1, V3-2, P3-1, BFA
	Fresh	Wet/Avg/Dry	1100 ML/day (Minimum 700 ML/day)	1 event in June or July to facilitate migration of fish.	Min 7 day at peak, additional duration provided by tributaries.	2.0/0.8	Maintain suitable habitat for b upstream immigration of juver tupong) and amphidromous (/ galaxias) fishes from downstr and eels to the sea to spawn. organic material. (G3-2, M3-3, F3-2, F3-3, F3-5
			1800 ML/day	1 event between June and September	Min 2 day at peak, additional duration provided by tributaries.	-	As per fresh above, but highe (G3-2, M3-3, F3-2, F3-3, F3-5
	High	Wet/Avg	1800 ML/day	Minimum 1 event in September/October, prior to Macquarie Perch spawning further downstream (November to December)	14 days	2.0/0.8	As per fresh but provides prol (G3-1, G3-2, F3-2, F3-3, F3-5
		Dry	Not expected to occur in dr	ry years, but allow to occur naturally.		1	-
	Bankfull ^{1,2}	Wet/Avg	4000 ML/day	1 per year	2 days	N/A	Maintain existing channel geo
		Dry	Not expected, but let it occ	ur naturally.			channel, entrain organic mate provide wetted habitat for wat (G3-1, G3-3, V3-3, V3-4, V3-4
	Overbank ^{1,2}	Wet/Avg	4000-6000 ML/day	1 event every 1-2 years	1-2 days	N/A	Engage and provide flow thro
		Dry	Not expected, but let it occ	ur naturally.		-	wetted habitat area for waterk (G3-4, V3-8, V3-9, P3-5, BFA

Table C.4 : Flow recommendations for Reach 3. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

¹ Bankfull and Overbank flows could occur at any time (in Summer also).

² Events that fill billabongs may be managed through site specific water management strategies.

tables for id reference)

r bugs, fish (river blackfish, Australian smelt, ornate short-finned eel, short-headed lamprey, pouched d galaxias, spotted galaxias & common galaxias) intain drought refuge pools and aquatic vegetation

2, BFA3-1)

VD habitat by periodically scouring sediment & biofilms, ation on banks, provide opportunities for fish movement on of eels

\3-2)

n and spawning by Australian Grayling and transport uvenile platypus dispersal. Cue downstream migration of

to habitat for bugs, fish (river blackfish, Australian smelt, rayling, short-finned eel, short-headed lamprey, pouched d galaxias, spotted galaxias & common galaxias) ndate bank vegetation

(3-4)

bugs, fish & platypus. Provide fish passage, facilitate nile catadromous (short-finned eel, common galaxias, Australian grayling, broad-finned galaxias, spotted eam river reaches, cue downstream migration by tupong Maintain flood-tolerant vegetation on banks and entrain

5, F3-6, V3-4, P3-3, BFA3-5)

er flow to maintain flood-tolerant vegetation on banks 5, F3-6, V3-4, V3-5, P3-3, BFA3-5)

longed disturbance to favour flood-tolerant vegetation 5, F3-6, V3-6, P3-3, BFA3-6)

ometry & prevent further vegetation encroachment in erial, deliver water to billabongs via flood-runners and terbirds and frogs 5, P3-5, BFA3-7)

bugh billabongs and inundate low level floodplains, provide birds and frogs A3-8)

Stream	Yarra River	River Reach Watts River to Yering Gorge							
Compliance point	Yarra Glen		Gauge No.	229206					
Season	Flow	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Objective (refer to objectives		
Summer / Autumn (Dec- May)	Low flow	Wet/Avg/Dry	Minimum flow of 200 ML/da years.	nmum flow of 200 ML/day, allow tributaries to provide variation above 200 ML/day in average and wet sars.					
	Fresh	Wet/Avg	Minimum of 450 ML/day	Minimum 3 events	Min 2 days at peak	2.0/0.8	Maintain suitable riffle and LW		
		Dry	450 ML/day	3 events	2 days		maintain flood-tolerant vegeta movement and cue downstrea (G4-2, M4-3, F4-7, F4-6, V4-3		
	High	Wet/Avg/Dry	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy.	1 (April/May), every year. Must occur 2 in 3 years.	Min 7 day at peak and event should last for 14 days from start to finish.	2.0/0.8	Trigger downstream migration larvae to sea. Cue downstrear dispersal. (F4-5, F4-7, P4-3, BFA4-3)		
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg	Minimum recommendation ML/day in average and wet	of 350 ML/day, allow tributaries to provide years.	additional variation above	350	Higher flows increase access smelt, ornate galaxias, Austra		
		Dry	Minimum flow 350 ML/day,	but may not reach this magnitude until late	e June or mid July.		pouched lamprey, tupong, bro platypus, birds and frogs, inur (M4-2, F4-1, V4-2, P4-1, BFA		
	Fresh V	Wet/Avg/Dry	1100 ML/day	1 event occurring in June or July to facilitate migration of fish.	Min 7 day at peak, additional duration provided by tributaries.	2.0/0.8	Maintain suitable habitat for b upstream immigration of juver tupong) and amphidromous (A galaxias) fishes from downstre and eels to the sea to spawn. organic material. (G4-2, M4-3, F4-3, F4-4, F4-6		
			2000 ML/day	1 event between June and September	Min 2 day at peak, additional duration provided by tributaries.		As per fresh above, but highe (G4-2, M4-3, F4-3, F4-4, F4-6		
	High	Wet/Avg	2000 ML/day	Minimum 1 event in September/October, prior to Macquarie Perch spawning further downstream (November to December)	14 days	2.0/0.8	As per fresh but provides prol (G4-1, F4-3, F4-4, F4-6, F4-7,		
		Dry	Not expected to occur in dry	y years, but allow to occur naturally.	·	·			
	Bankfull ^{1,2}	Wet/Avg	5000 ML/day	1 per year	2 days	N/A	Maintain existing channel geo		
		Dry	Not expected, but let it occu	ir naturally.			provided wetted habitat for wa (G4-1, G4-3, V4-7, V4-8, V4-9		
	Overbank ^{1,2}	Wet/Avg	8000-10,000 ML/d	1 event every 1-2 years	1-2 days	N/A	Engage and provide flow throu		
		Dry	Not expected, but let it occur naturally.		1		wetted habitat area for waterb (G4-4, V4-7, V4-8, V4-9, P4-5		

Table C.5 : Flow recommendations for Reach 4. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

¹ Bankfull and Overbank flows could occur at any time (in Summer also).

² Events that fill billabongs may be managed through site specific water management strategies.

tables for id reference)

r bugs, fish (river blackfish, Australian smelt, ornate short-finned eel, short-headed lamprey, pouched d galaxias, spotted galaxias & common galaxias) intain drought refuge pools, drying period for bank

2, BFA4-1)

VD habitat by periodically scouring sediment & biofilms, ation on banks, provide opportunities for local fish am migration of eels.

3, P4-3, BFA4-2)

n and spawning by Australian Grayling and transport im migration of eels. May facilitate juvenile platypus

to habitat for bugs & fish (river blackfish, Australian alian grayling, short-finned eel, short-headed lamprey, oad-finned galaxias, spotted galaxias & common galaxias) ndate bank vegetation

\4-4)

bugs, fish & platypus. Provide fish passage, facilitate nile catadromous (short-finned eel, common galaxias, Australian grayling, broad-finned galaxias, spotted ream river reaches, cue downstream migration by tupong Maintain flood-tolerant vegetation on banks and entrain

6, F4-7, V4-4, P4-3, BFA4-5)

er flow to maintain flood-tolerant vegetation on banks 6, F4-7, V4-4, V4-5, P4-3, BFA4-5)

longed disturbance to favour flood-tolerant vegetation 7, V4-6, P4-3, P4-4, BFA4-6)

ometry & prevent further vegetation encroachment in erial, deliver water to billabongs via flood-runners and aterbirds and frogs

9, P4-5, BFA4-7)

bugh billabongs and inundate low level floodplains, provide birds and frogs 5, BFA4-8)

Stream	Yarra River		Reach				
Compliance point	Yering Gorge	Э	Gauge No.	229200			
Season	Flow	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Objective (refer to objectives
Summer / Autumn (Dec- May)	Low flow	Wet/Avg/Dry	Minimum flow of 200 ML/day and wet years. Note – higher flows may be r Weir pool (Reach 6), but 200	, allow tributaries to provide additional var needed to meet flow recommendations for ML/day is adequate to meet the objective	riation above 200 ML/day i r water quality in the Dights es for Reach 5.	n average s Falls	Maintain access to habitat for smelt, ornate galaxias, Austra pouched lamprey, tupong, bro galaxias), native non- indigene birds and frogs. Maintain aqu (M5-1, F5-1, V5-1, W5-1, P5-
	Fresh	Wet/Avg	Minimum of 750 ML/day	Minimum 3 events	Min 2 day at peak	2.0/0.8	Maintain suitable riffle and LW
		Dry	750 ML/day	3 events	2 days		(G5-2, M5-3, F5-4, F5-7, V5-3
	High	Wet/Avg/Dry	1300 ML/day	1 (April/May) every year. Must occur 2 in 3 years.	Min 7 day at peak. Event should last for 14 days from start to finish.	2.0/0.8	Trigger downstream migration larvae to sea. Cue downstrear dispersal. (G5-1, F5-5, F5-7, BFA5-3)
Winter / Spring	Low flow	Wet/Avg	Median flow 750 ML/day with	a minimum flow of 350 ML/day.		1	Higher flows increase access
(Jun-Nov)		Dry	Median flow 600 ML/day with	a minimum flow of 350 ML/day.			Australian smelt, ornate galax lamprey, pouched lamprey, tu galaxias), native non- indigene birds and frogs, wet bank veg (M5-2, F5-2, V5-2, W5-1, P5-
	Fresh	Wet/Avg/Dry	1300 ML/day	1 event occurring in June or July to facilitate migration of fish.	Min 7 day at peak	2.0/0.8	Maintain suitable habitat for b perch spawning. Provide fish catadromous (short-finned ee (Australian grayling, broad-fin river reaches, cue downstrear Maintain flood-tolerant vegeta (G5-2, M5-3, F5-3, F5-4, F5-6)
			2500 ML/day	1 event between June and September	Min 2 day at peak		As per fresh above, but highe (G5-2, M5-3, F5-3, F5-4, F5-6
	High ¹	Wet/Avg	2500 ML/day	Minimum 1 event in September- October, prior to Macquarie Perch spawning (November-December).	14 days	2.0/0.8	As per fresh but provides prol- Also flushes accumulated fine of habitats, including Macquar
		Dry	Not expected to occur in dry	years, but allow to occur naturally.			(G5-1, F5-3, F5-3, F5-4, F5-6
	Bankfull/	Wet/Avg	5000-14,000 ML/day	1 per year	1-2 days	N/A	Maintain existing channel geo
	Overbank ¹	Dry	Not expected, but let it occur	naturally.			channel, entrain organic mate wetted habitat area for waterb (G5-1, G5-3, V5-6, V5-7, V5-8

Table C.6 : Flow recommendations for Reach 5. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

¹ High, Bankfull and Overbank flows could occur at any time (in Summer also).

tables for id reference)

r bugs, native indigenous fish (river blackfish, Australian alian grayling, short-finned eel, short-headed lamprey, oad-finned galaxias, spotted galaxias & common hous fish (Macquarie perch and Murray cod) platypus, uatic vegetation and water quality.

1, P5-2, BFA5-1)

VD habitat by periodically scouring sediment & biofilms, ation on banks, provide opportunities for local fish am migration of eels

3, P5-3, BFA5-2)

n and spawning by Australian Grayling and transport im migration of eels. May facilitate juvenile platypus

to habitat for bugs, native indigenous fish (river blackfish, xias, Australian grayling, short-finned eel, short-headed upong, broad-finned galaxias, spotted galaxias & common nous fish (Macquarie perch and Murray cod) platypus, getation

1, P5-2, BFA5-4)

bugs, fish & platypus, scour gravels to improve Macquarie of passage, facilitate upstream immigration of juvenile el, common galaxias, tupong) and amphidromous aned galaxias, spotted galaxias) fishes from downstream m migration by Tupong and eels to the sea to spawn. ation on banks and entrain organic material.

6, F5-7, V5-4, P5-3, BFA5-5)

er flow to maintain flood-tolerant vegetation on banks 6, F5-7, V5-4, V5-5, P5-3, BFA5-5)

longed disturbance to favour flood-tolerant vegetation. e sediments to maintain or improve quality and availability rie perch spawning habitats.

6, F5-7, V5-6, P5-3, BFA5-6)

pmetry & prevent further vegetation encroachment in erial, deliver water to billabongs via flood-runners, provide birds and frogs

8, V5-9, P5-5, BFA5-7, BFA5-8)

Stream	Yarra River		Reach	Mullum Mullum Creek to Dights Fall Weir					
Compliance point	Chandler High	nway	Gauge No.	229143	29143				
Season	Flow	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Objective (refer to objectives t		
Summer / Autumn (Dec- May)	Low flow	Wet/Avg/Dry	Minimum recommendation of Highway. Minimum recommendation of mixed conditions in the Dight Higher magnitude flows are a	f 300 ML/day to minimise risk of low DO ir f 450 ML/day in December to February if o is Falls Weir Pool, downstream of Chandle acceptable.	n pools upstream of Chanc considered necessary to m er Highway.	ller aintain	Maintain access to habitat for smelt, ornate galaxias, Austral pouched lamprey, tupong, bro galaxias), native non- indigeno birds and frogs, drying period to (M6-1, F6-1, V6-1, W6-1, P6-1)		
	Fresh	Wet/Avg	Minimum of 750 ML/day	Minimum 3 events	Min 2 days at peak	2.0/0.8	Maintain suitable riffle habitat		
		Dry	750 ML/day	3 events	2 days		flood-tolerant vegetation on ba fish and cue downstream migr (G6-2, M6-3, F6-9, V6-3, P6-3		
	High	Wet/Avg/Dry	1300 ML/day minimum flow	Trigger downstream migration larvae to sea. Cue downstrear dispersal. (G6-1, F6-7, F6-9, BFA6-3)					
Winter / Spring (Jun-Nov)	Low flow	Wet/Avg	Median flow 750 ML/day, dai variation above 750 ML/day i Maximises habitat availability	ly minimum flow of 350 ML/day, allow trib n average and wet years. Higher magnitu	utaries to provide additionaude flows are acceptable.	al	Higher flows increase access Australian smelt, ornate galaxi lamprey, pouched lamprey, tu		
		Dry	Median flow 600 ML/day, dai	ly minimum 350 ML/day.	galaxias), native non- indigend birds and frogs, wet bank vege (M6-2, F6-1, V6-2, P6-1, P6-2				
	Fresh	Fresh ^W	Fresh Wet/Avg/Dr		1300 ML/day	1 event occurring in June or July to facilitate migration of fish.	Min 7 day at peak	2.0/0.8	Maintain suitable habitat for bu perch spawning. Provide fish catadromous (short-finned eel (Australian grayling, broad-finr (short-headed lamprey, pouch upstream spawning migration sea, cue downstream migratio flood-tolerant vegetation on ba (G6-2, M6-3, F6-3, F6-4, F6-5)
			2500 ML/day	1 event between June and September	Min 2 day at peak		As per fresh above, but higher (G6-2, M6-3, F6-3, F6-4, F6-5		
	High ¹	Wet/Avg	2500 ML/day	Minimum 1 event in September- October, prior to Macquarie Perch spawning (November-December).	14 days	N/A	As per fresh but provides proto Also flushes accumulated fine of habitats, including Macquar		
		Dry	Not expected to occur in dry	years, but allow to occur naturally.			(G6-1, F63, F6-4, F6-5, F6-6,		
	Bankfull/ Overbank ^{1,2}	Wet/Avg Dry	11,000 – 16,000 ML/day Not expected, but let it occur	1 per year naturally.	Maintain existing channel geor channel, entrain organic mater floodplains, provide wetted ha (G6-1, G6-3, V6-3, V6-4, V6-5				

Table C.7 : Flow recommendations for Reach 6. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

¹ High, Bankfull and Overbank flows could occur at any time (in Summer also).

tables for id reference)

bugs, native indigenous fish (river blackfish, Australian lian grayling, short-finned eel, short-headed lamprey, bad-finned galaxias, spotted galaxias & common ous fish (Macquarie perch and Murray cod) platypus, for bank vegetation, minimise risk of low DO conditions

1, P6-2, BFA6-1)

by periodically scouring sediment & biofilms, maintain anks, provide occasional fish passage for larger bodied ration of eels.

3, BFA6-2)

n and spawning by Australian Grayling and transport m migration of eels. May facilitate juvenile platypus

to habitat for bugs, native indigenous fish (river blackfish, kias, Australian grayling, short-finned eel, short-headed upong, broad-finned galaxias, spotted galaxias & common ous fish (Macquarie perch and Murray cod) platypus, jetation

2, BFA6-4)

lugs, fish & platypus, scour gravels to improve Macquarie passage, facilitate upstream immigration of juvenile el, common galaxias, tupong) and amphidromous uned galaxias, spotted galaxias) and adult anadromous ned lamprey) fishes from downstream river reaches, cue by short-headed lamprey and pouched lamprey from the on by tupong and eels to the sea to spawn. Maintain anks and entrain organic material.

5, F6-6, F6-8, F6-9, V6-4, W6-1b, P6-3, BFA6-5)

r flow to maintain flood-tolerant vegetation on banks 5, F6-6, F6-8, F6-9, V6-4, V6-5, W6-1b, P6-3, BFA6-5)

onged disturbance to favour flood-tolerant vegetation. e sediments to maintain or improve quality and availability rie perch spawning habitats.

F6-8, F6-9, V6-6, P6-4, BFA6-6)

pretry & prevent further vegetation encroachment in erial, engage high flow channels, billabongs and low level abitat for waterbirds and frogs.

5, P6-5, BFA6-7, BFA6-8)

Appendix D. Flow recommendations

Stream	Yarra River			Reach	Upper Yarra Dam to Armstrong Creek confluence				
Compliance point	Doctors Cree	ek Gauge		Gauge No.	229103				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fal I	Description of changes	
Summer / Autumn (Dec- May)	Low flow	Maintain access to and area of habitat for bugs, fish (river blackfish, Australian smelt, short-finned eel, and ornate galaxias) platypus, birds and frogs, maintain drought refuge pool, instream vegetation and drying period for bank vegetation. (M1-1, F1-1, V1-1, V1-6, P1-1, P1-2, BFA1-1)	Wet/Avg/Dry	10 ML/day released from storage provide additional flow and the re	e. Inflow from Doctors Creek and equired flow variation.	d local catchment n	un-off	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. No change in recommended volume from SKM (2012).	
	Fresh	Maintain suitable riffle habitat by periodically scouring sediment and biofilms, maintain flood-tolerant vegetation on banks. (G1-2, M1-3, V1-3, P1-3, P1-4, BFA1-2)	Wet/Avg	60 ML/day released from storage plus Doctors Creek flow on top of this to provide increased magnitude and variability during average and wet years.	Minimum 4 events delivered + additional events provided by Doctors Creek. One event could be up to 300 ML/day without posing additional risk	Min 1 day at peak, additional duration provided by Doctors Creek.	2.0/0.8	Minor changes to the wording of objective. No change in recommended volume from SKM (2012). Added in note that one event could be up to 300 ML/day without posing additional risk. Revised rise/fall from 1.6/0.7 to 2.0/0.8. These still lie within the 50-80 th percentile and are	
			Dry	60 ML/day	4 events	1 day		considered conservative.	
	High	Not recommended						No change, but as noted above, one of the fresh events could be up to 300 ML/Day	
Winter / Spring (Jun-Nov)	Low flow	Maintain access to habitat for bugs, fish (river blackfish, Australian smelt, short-finned eel, and ornate galaxias), and native non- indigenous fish (Macquarie perch and Murray cod) platypus, birds and frogs, maintain instream vegetation. (M1-2, F1-1, V1-2, V1-6, P1-1, P1-2, BFA1-4)	Wet/Avg/Dry	10 ML/day released from storage provide additional flow and requi Winter / Spring compared to Sun	e. Inflow from Doctors Creek and red flow variation expected with g nmer / Autumn season.	d local catchment r	un-off ws in	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. Expectation that low flow will be higher in Winter / Spring than Summer / Autumn season with greater tributary flows in Winter / Spring compared to Summer / Autumn season. No change in recommended volume from SKM (2012).	
	Fresh	Maintain suitable riffle habitat by periodically scouring sediment & biofilms, maintain flood- tolerant vegetation on banks. (G1-2, M1-3, F1-2, V1-3, P1-3, BFA1-5)		100 ML/day releases from storage with Doctors Creek flow on top of this provide increased magnitude and variability during average and wet years.	Minimum 3 events delivered + additional events provided by Doctors Creek.	Min 2 day at peak, additional duration provided by Doctors Creek.	2.0/0.8	No change in recommended volume from SKM (2012). Revised rise/fall from 1.6/0.7 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
			Dry	100 ML/day	3 events	2 days			
	High	Scour sediment from pools to increase habitat availability, provide a disturbance regime to promote flood-tolerant species and limit encroachment of terrestrial vegetation and entrain organic material. (G1-3, M1-4, F1-2, V1-4, V1-7, P1-3, P1-4,	Wet/Avg/Dry	300 ML/day	Once every year or 1 in 2 years (minimum) Restrict to June-September period.	3 days	2.0/0.8	Revised recommended frequency from 1 in 2 years (SKM 2012) to once every year or 1 in 2 years (minimum). Revised rise/fall from 1.6/0.7 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
		BFA1-6)							

Table D.1 : Flow recommendations for Reach 1. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River			Reach	Upper Yarra Dam to Armstrong	Creek confluence			
Compliance point	Doctors Cree	ek Gauge		Gauge No.	229103				
Season	Flow	Objective (refer to objectives tables for id reference)		Volume	Frequency and when Duration Ri		Rise/Fal I	Description of changes	
	Bankfull ¹	Maintain existing channel geometry & prevent further vegetation encroachment in channel. (G1-1, V1-5, V1-8, P1-4, P1-5, BFA1-7)	Wet/Avg/Dry	600 ML/day	1 in 2-5 years, restrict to June- Sept period (peak of event prior to Mid October) to mitigate risks to platypus.	3 days	2.0/0.8	Changed from 1100 ML/day to 600 ML/day based on results of recent monitoring of 600 ML/day flow release which had little impact on channel (GHD 2016). Also recommend that this is delivered more frequently, 1 in 2-5 years. This change in recommended higher frequency of high and bankfull flows should be monitored to assess the cumulative impact of these releases on the channel and rate of recovery between events. Added restriction to June- September period to mitigate risks to platypus or fish. Revised rise/fall from 1.6/0.7 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
	Overbank ¹	Not recommended							

¹Bankfull and Overbank flows could occur at any time (in Summer also)

Stream	Yarra River	/arra River		Reach	Armstrong Creek confluence to	Armstrong Creek confluence to Millgrove			
Compliance point	Millgrove Ga	auge		Gauge No.	229212				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
Summer / Autumn (Dec- May)	Low flow	Maintain access to habitat for bugs, fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short- headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias) platypus, birds and frogs, maintain drought refuge pools, drying period for bank vegetation. (M2-1, F2-1, V2-1, P2-1, P2-2, BFA2-1)	Wet/Avg/Dry	Minimum recommendation of 80 ML/day in average and wet years	ML/day, allow tributaries to provid	de variation greate	r than 80	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. No change in recommended volume from SKM (2012).	
	Fresh	Maintain suitable riffle habitat by periodically scouring sediment & biofilms, maintain flood- tolerant vegetation on banks, provide opportunities for fish movement. Cue downstream migration of eels. (G2-3, M2-3, F2-3, F2-6, V2-3, P2-3, BFA2-2)	Wet/Avg	350 ML/day, tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	Minimum 3 events + additional events provided by Tributaries.	Min 2 day at peak. Longer duration flows acceptable in average and wet years.	2.0/0.8	Minor changes to the wording of objective, noting that freshes also cue downstream migration of eels. No change in recommended volume, frequency and duration from SKM (2012). Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
	High	Trigger downstream snawning migration of	Wet/Avg/Drv	560 ML/day tributary inflows	1 (April/May) every year Must	Z uays Min 7 day at	2 0/0 8	Minor changes to the wording of objective	
		Australian Grayling. Cue downstream migration of eels. May facilitate juvenile platypus dispersal. (F2-4, F2-6, P2-3, BFA2-3)	WellAvg/Diy	provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	occur 2 in 3 years.	peak. Longer duration flows acceptable in average and wet years.	2.0/0.0	noting that high flow also cue for downstream migration of eels and may facilitate juvenile platypus dispersal. No change in recommended volume, frequency and duration from SKM (2012). Event required 2 in 3 years to trigger downstream spawning migration of Australian Grayling, prioritise this. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
Winter / Spring (Jun-Nov)	Low flow	Higher flows increase access to habitat for bugs, fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-	Wet/Avg	Minimum recommendation of 200 ML/day in July), allow tributaries years.	0-350 ML/day (200 ML/day in Jun to provide additional flow and var	e transitioning to 3 iation in average a	350 and wet	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs.	
	finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias) platypus, birds and frogs, wet bank vegetation. (M2-2, F2-1, V2-2, P2-1, BFA2-4) Minimum recommendation of 80-350 ML/day with transitional flows in J November (80 ML/day June, 200 ML/Day July, 350 ML/day August – C ML/day in November)					s in June/July and t – October and 2	00	Expectation that low flow will be higher in Winter / Spring than Summer / Autumn season. Low flow recommendation in Wet/Average years changed to allow for lower minimum flow in June (200 ML/day) transitioning to 350 ML/day in July. Low flow recommendation in Dry years changed to allow for transitioning between Summer / Autumn and Winter / Spring (80 ML/day June, 200 ML/Day July, 350 ML/day August – October and 200 ML/day in November).	

Table D.2 : Flow recommendations for Reach 2. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River			Reach	Armstrong Creek confluence to	Millgrove		
Compliance point	Millgrove Ga	auge		Gauge No.	229212			
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes
	Fresh	Maintain suitable riffle habitat by periodically scouring sediment & biofilms. Provide fish passage, facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches, cue downstream migration by Tupong and eels to the sea to spawn. Maintain flood- tolerant vegetation on banks and entrain organic material (G2-3, M2-3, F2-2, F2-3, F2-5, F2-6, V2-3, P2- 3, BFA2-5)	Wet/Avg/Dry	700 ML/day tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	Minimum 2 events between June and August.	3 days at peak. Longer duration flows acceptable in average and wet years.	2.0/0.8	Includes explicit reference to fish species and expected migrations in response to fresh. No change in recommended volume from SKM (2012). Changed timing of freshes from between June and September to between June and August and shortened recommended duration from 7 days to 3 days at peak (since this shorter duration is likely to be sufficient to meet the vegetation and fish objectives). Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.
	High	As per fresh but provides prolonged disturbance to favour flood-tolerant vegetation	Wet/Avg	700 ML/day	Minimum 1 event in September, allow to occur naturally at other times.	14 days	2.0/0.8	No change in recommended volume, frequent and duration from SKM (2012). 14 day duration is required to prevent terrestrialisation of the riparian zone. The validity of the original recommended duration
		BFA2-6)	Dry	Not necessary to deliver but allow	v to occur naturally			terrestrialisation of the riparian zone. The validity of the original recommended duration of 14 days was discussed during the EFTP workshop. The subsequent literature search of the time required to drown-out terrestrial vegetation indicated that the physiological consequences of prolonged inundation on vegetation are well understood at a conceptual level (Etherington 1982) and that inundation can reduce or control encroachment by terrestrial species (MIIIer et al. 2013)but that inundation impacts were affected by a wide suite of factors, including time of year, plant species and variety, stage of growth and life cycle of the targeted plants, preceding conditions etc. Some terrestrial/riparian species are tolerant of prolonged inundation whereas others are highly sensitive to even minor flooding (e.g. see Cowie et al. 1996, Craine & Orians 2006, Esteban & Edwin 2016, Gerurts et al. 2005, Hare et al. 2004, Lenssen et al. 1998, Lynne & Waldren 2003, McDaniel et al. 2016, Shiferaw et al. 1992). The 14-day period is a reasonable compromise duration that will likely limit terrestrialisation by herbs, forbs, grasses and trees/shrub species. Monitoring is strongly recommended to test this recommendation, as the literature review was not unequivocal in its findings and there were few published reports that quantified the optimal duration to prevent encroachment. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are

Stream	Yarra River			Reach	Armstrong Creek confluence to	Millgrove			
Compliance point	Millgrove Ga	auge		Gauge No.	229212				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when Duration Rise/Fall			Description of changes	
								considered conservative. Active delivery of these events may be contingent on resolving capacity constraints in the headworks system.	
	Bankfull / overbank ¹ Maintain existing channel geometry & prevent further vegetation encroachment in channel, entrain organic material, engage high flow channels and provide wetted habitat for waterbirds and frogs		Wet/Avg	2700 ML/day. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	1 in 2 years. Expect to occur naturally, not a delivered event.	2 days at peak. Longer duration flows acceptable in average and wet years.	N/A	No change in recommended volume, frequency and duration from SKM (2012). Emphasised that these flows will occur naturally, not a delivered event. Changed rise/fall to N/A as there is no control over this.	
		7)	Dry	Not expected, but let it occur naturally.					

¹Bankfull / overbank flows could occur at any time (in Summer also).

Stream	Yarra River			Reach	Millgrove to Watts River confluence				
Compliance point	Yarra Grange			Gauge No.	229653				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
Summer / Autumn (Dec- May)	Low flow	Maintain access to habitat for bugs, fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias) platypus, birds and frogs, maintain drought refuge pools and aquatic vegetation (M3-1, F3-1, V3-1, P3-1, P3-2, BFA3-1)	Wet/Avg/Dry	Minimum recommendation of 120 allow tributaries to provide additio and wet years. Tributary inflows w	ML/day at Woori Yallock and 15 nal flow above the minimum reco will contribute to important flow v	50 ML/day at Evera ommendation in av ariation.	rd Park, erage	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. No change in recommended volume from SKM (2012).	
	Fresh	Maintain suitable riffle and LWD habitat by periodically scouring sediment & biofilms, maintain flood-tolerant vegetation on banks, provide opportunities for fish movement and cue downstream migration of eels (M3-3, F3-6, V3-3, P3-3, BFA3-2)	Wet/Avg	350 ML/day at Woori Yallock and 450 ML/day at Everard Park, tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	Minimum 3 events + additional events provided by Tributaries.	Min 2 days at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	Minor changes to the wording of objective, noting that freshes also cue downstream migration of eels. No change in recommended volume, frequency and duration from SKM (2012). Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
			Dry	350 ML/day at Woori Yallock and 450 ML/day at Everard Park	3 events	2 days			
	HighTrigger downstream migration and spawnin by Australian Grayling and transport larvae to sea. May facilitate juvenile platypus dispersal. Cue downstream migration of eels (F3-4, F3-6, P3-3, BFA3-3)	Wet/Avg	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy. Events that exceed the recommendation should be protected through downstream reaches. Higher magnitude and longer duration flows are beneficial in average and wet years.	1 (April/May), every year. Must occur 2 in 3 years.	Min 7 day at peak and event should last for 14 days from start to finish. Higher and longer duration flows are	2.0/0.8	Minor changes to the wording of objective, noting that high flow also cue for downstream migration of eels and may facilitate juvenile platypus dispersal. No change in recommended volume, frequency and duration from SKM (2012). Event required 2 in 3 years to trigger downstream spawning migration of Australian Grayling, prioritise this.		
			Dry	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy. Larger magnitude flows should be passed and protected through downstream reaches.	1 (April/May), every year. Must occur 2 in 3 years.	desirable in average and wet years.		still lie within the 50-80 th percentile and are considered conservative.	
Winter / Spring (Jun-Nov)	Low flow	Higher flows increase access to habitat for bugs, fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-	Wet/Avg	Minimum recommendation of 200 ML/day in July), allow tributaries t years.	-350 ML/day (200 ML/day in Jun o provide additional flow and var	ne transitioning to 3 riation in average a	50 nd wet	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs.	
		tinned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias) platypus, birds and frogs, inundate bank vegetation	Dry	Minimum recommendation of 80-3 November (80 ML/day June, 200 in November)	Expectation that low flow will be higher in Winter / Spring than Summer / Autumn season. Low flow recommendation in wet/average years changed to allow for lower minimum flow in				

Table D.3 : Flow recommendations for Reach 3. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River			Reach	Millgrove to Watts River confluence				
Compliance point	Yarra Grange			Gauge No.	229653				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
		(M3-2, F3-1, V3-2, P3-1, BFA3-4)						June (200 ML/day) transitioning to 350 ML/day in July. Low flow recommendation in Dry years changed to allow for transitioning between Summer / Autumn and Winter / Spring (80 ML/day June, 200 ML/Day July, 350 ML/day August – October and 200 ML/day in November).	
	Fresh	Maintain suitable habitat for bugs, fish & platypus. Provide fish passage, facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches, cue downstream migration by tupong and eels to the sea to spawn. Maintain flood-tolerant vegetation on banks and entrain organic material. (G3-2, M3-3, F3-2, F3-3, F3-5, F3-6, V3-4,	Wet/Avg/Dry	1100 ML/day (Minimum 700 ML/day) – tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are beneficial in average and wet years.	1 event occurring in June or July to facilitate migration of fish.	Min 7 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	 Includes explicit reference to fish species and expected migrations in response to fresh. Revised volume, timing and duration of Winter / Spring fresh recommendation documented in SKM (2012). Changed from 2 Freshes of 1800 M/Day for seven days at peak to: 1100 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water). 1800 ML/day fresh between June and 	
		P3-3, BFA3-5) As per fresh above, but higher flow to maintain flood-tolerant vegetation on banks (G3-2, M3-3, F3-2, F3-3, F3-5, F3-6, V3-4, V3-5, P3-3, BFA3-5)		1800 ML/day - as per fresh above, but higher flow to maintain flood-tolerant vegetation on banks. Tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are beneficial in average and wet years.	1 event between June and September	Min 2 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	-	September, min 2 days at peak – higher but shorter duration fresh to maintain flood- tolerant vegetation higher on banks. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release.	
	High	As per fresh but provides prolonged disturbance to favour flood-tolerant vegetation (G3-1, G3-2, F3-2, F3-3, F3-5, F3-6, V3-6, P3-3, BEA3-6)	Wet/Avg	1800 ML/day	Minimum 1 event in September/October, prior to Macquarie Perch spawning further downstream (November to December)	14 days	2.0/0.8	Changed timing of high flow from October- November (SKM 2012) to September-October (prior to Macquarie Perch spawning). 14 day duration is required to prevent terrestrialisation of the riparian zone. The rationalisation for	
			Dry	Not expected to occur in dry year	s, but allow to occur naturally.		·	retaining the original 14-day duration is the same as that provided for Reach 2. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release.	
	Bankfull ^{1,2}	Maintain existing channel geometry & prevent further vegetation encroachment in channel, entrain organic material, deliver	Wet/Avg	4000 ML/day	1 per year	2 days	N/A	These are natural flow events not managed flows. Deleted "but avoid during October and November if possible" as previously stated in	
		water to billabongs via flood-runners and	Dry	Not expected, but let it occur natu	urally.			SKM (2012) as there is no control over timing of	

Stream	Yarra River			Reach	Millgrove to Watts River conflue	ence		
Compliance point	Yarra Grange			Gauge No.	229653	229653		
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes
		provide wetted habitat for waterbirds and frogs (G3-1, G3-3, V3-3, V3-4, V3-5, P3-5, BFA3- 7)						flows. Similarly, changed rise/fall to N/A as there is no control over this.
	Overbank ^{1,2}	bank ^{1,2} Engage and provide flow through billabongs	Wet/Avg	4000-6000 ML/day	1 event every 1-2 years	1-2 days	N/A	These are natural flow events not managed
		and inundate low level floodplains, provide wetted habitat area for waterbirds and frogs (G3-4, V3-8, V3-9, P3-5, BFA3-8)	Dry	Not expected, but let it occur nat	irally.			flows. Deleted "but avoid during October and November if possible" as previously stated in SKM (2012) as there is no control over timing of flows. Similarly, changed rise/fall to N/A as there is no control over this. Changed volume from 9000 ML/day previously stated in SKM (2012) to 4000-6000 ML/day as a result of more recent investigations into the water regime of Yarra Bridge Billabong (Jacobs 2017e). Uncalibrated hydraulic model indicates overbank flows 7,500-8,500 ML/Day (inlet level from inlet channel 87.791 m AHD), however considered likely that overbank flow threshold is much lower - in the range of 4000-6000 ML/D (based on analysis of wet and dry periods).

¹ Bankfull and Overbank flows could occur at any time (in Summer also).

² Events that fill billabongs may be managed through site specific water management strategies.

Stream	Yarra River			Reach	Watts River to Yering Gorge			
Compliance point	Yarra Glen			Gauge No.	229206			
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes
Summer / Autumn (Dec- May)	Low flow	Maintain access to habitat for bugs, fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias) platypus, birds and frogs, maintain drought refuge pools, drying period for bank vegetation (M4-1, F4-1, V4-1, P4-1, P4-2, BFA4-1)	Wet/Avg/Dry	Minimum flow of 200 ML/day, average and wet years.	allow tributaries to provide varia	ition above 200 M	L/day in	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. No change in recommended volume from SKM (2012).
	Fresh	Maintain suitable riffle and LWD habitat by periodically scouring sediment & biofilms, maintain flood-tolerant vegetation on banks, provide opportunities for local fish movement and cue downstream migration of eels. (G4-2, M4-3, F4-7, F4-6, V4-3, P4-3, BFA4- 2)	Wet/Avg	Minimum of 450 ML/day, tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are beneficial in average and wet years.	Minimum 3 events + additional events provided by tributaries.	Min 2 days at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	Minor changes to the wording of objective, noting that freshes also cue downstream migration of eels. No change in recommended volume, frequency and duration from SKM (2012). Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.
			Dry	450 ML/day	3 events	2 days		
	High Trigger downstream migration and spawning by Australian Grayling and transport larvae to sea. Cue downstream migration of eels. May facilitate juvenile platypus dispersal. (F4-5, F4-7, P4-3, BFA4-3)	Trigger downstream migration and spawning by Australian Grayling and transport larvae to sea. Cue downstream migration of eels. May facilitate juvenile platypus dispersal. (F4-5, F4-7, P4-3, BFA4-3)	Wet/Avg	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy. Events that exceed the recommendation should be protected through downstream reaches.	1 (April/May), every year. Must occur 2 in 3 years.	Min 7 day at peak and event should last for 14 days from start to finish.	2.0/0.8	Minor changes to the wording of objective, noting that high flow also cue for downstream migration of eels and may facilitate juvenile platypus dispersal. No change in recommended volume, frequency and duration from SKM (2012). Event required 2 in 3 years to trigger downstream spawning
		Dry	900-1100 ML/day to ensure minimum flow of 1300 ML/day at Chandler Hwy. Larger magnitude flows should be passed and protected through downstream reaches.	1 (April/May), every year. Must occur 2 in 3 years.	Higher and longer duration flows are desirable in average and wet years.		migration of Australian Grayling, prioritise this. Note: In relation to Grayling, median travel speed 7-8 km per day, so flow duration needs to be sufficient to allow for long-distance. e.g. if fish travelling 80 km, need 10 day rising flows. Prefer flow event to be continuous so as to not disrupt cue. There's little data available of flows associated with spawning of grayling in the Yarra. The average flow (Fairfield) when grayling spawning detected was about 1500 ML/day. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	

Table D.4 : Flow recommendations for Reach 4. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River			Reach	Watts River to Yering Gorge			
Compliance point	Yarra Glen			Gauge No.	229206			
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes
Winter / Spring (Jun-Nov)	Low flow	Higher flows increase access to habitat for bugs & fish (river blackfish, Australian smalt, ornate galaxias, Australian gravling	Wet/Avg	Minimum recommendation of 3 above 350 ML/day in average	350 ML/day, allow tributaries to and wet years.	provide additiona	I variation	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and froms
		short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias) platypus, birds and frogs, inundate bank vegetation	Dry	Minimum flow 350 ML/day, but	t may not reach this magnitude	mid July.	Expectation that low flow will be higher in Winter / Spring than Summer / Autumn season.	
		(M4-2, F4-1, V4-2, P4-1, BFA4-4)			1			
	Fresh	Maintain suitable habitat for bugs, fish & platypus. Provide fish passage, facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad-finned galaxias, spotted galaxias) fishes from downstream river reaches, cue downstream migration by tupong and eels to the sea to spawn. Maintain flood-tolerant vegetation on banks and entrain organic material. (G4-2, M4-3, F4-3, F4-4, F4-6, F4-7, V4-4, P4-3, BFA4-5) As per fresh above, but higher flow to maintain flood-tolerant vegetation on banks (G4-2, M4-3, F4-3, F4-4, F4-6, F4-7, V4-4, V4-5, P4-3, BFA4-5)	Wet/Avg/Dry	 1100 ML/day- tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and likely to be beneficial in average and wet years. 2000 ML/day- tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and likely to be beneficial in average and wet years. 	1 event occurring in June or July to facilitate migration of fish. 1 event between June and September	Min 7 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years. Min 2 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and	2.0/0.8	 Includes explicit reference to fish species and expected migrations in response to fresh. Revised volume, timing and duration of Winter / Spring fresh recommendation documented in SKM (2012). Changed from 2 Freshes of 2000 M/Day for seven days at peak to: 1000 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak. 2000 ML/day fresh between June and September, min 2 days at peak – higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release (greater flexibility with inputs from Watts River).
	High	As per fresh but provides prolonged disturbance to favour flood-tolerant vegetation (G4-1, F4-3, F4-4, F4-6, F4-7, V4-6, P4-3, P4-4, BFA4-6) Dry	Wet/Avg	2000 ML/day	Minimum 1 event in September/October, prior to Macquarie Perch spawning further downstream (November to December)	14 days	2.0/0.8	Changed timing of high flow from October- November (SKM 2012) to September-October (prior to Macquarie Perch spawning). 14 day duration is required to prevent terrestrialisation of the riparian zone. The rationalisation for retaining the original 14 day duration is the
			Dry	Not expected to occur in dry ye	ears, but allow to occur naturall	retaining the original 14-day dur same as that provided for Reac Revised rise/fall from 1.4/0.85 to still lie within the 50-80 th percen- considered conservative. This event can potentially be de result of tributary flows plus top (greater flexibility with inputs fro		

Stream	Yarra River			Reach	Watts River to Yering Gorge					
Compliance point	Yarra Glen			Gauge No.	229206					
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall			
	Bankfull ^{1,2}	Maintain existing channel geometry & prevent further vegetation encroachment in	Wet/Avg	5000 ML/day	1 per year	2 days	N/A			
		channel, entrain organic material, deliver water to billabongs via flood-runners and provided wetted habitat for waterbirds and frogs	Dry	Not expected, but let it occur r	naturally.		~			
		(G4-1, G4-3, V4-7, V4-8, V4-9, P4-5, BFA4- 7)								
	Overbank ^{1,2}	Engage and provide flow through billabongs	Wet/Avg	8000-10,000 ML/d	1 event every 1-2 years 1-2 days					
	and inundate low level floodplains, pro wetted habitat area for waterbirds and		Dry	Jot expected, but let it occur naturally.						
		(G4-4, V4-7, V4-8, V4-9, P4-5, BFA4-8)								

¹ Bankfull and Overbank flows could occur at any time (in Summer also).

² Events that fill billabongs may be managed through site specific water management strategies.

Description of changes

These are natural flow events not managed flows. Revised frequency to 1 per year, consistent with upstream reach. Changed rise/fall to N/A as there is no control over this

These are natural flow events not managed flows. Deleted "but avoid during October and November if possible" as previously stated in SKM (2012) as there is no control over timing of flows. Similarly, changed rise/fall to N/A as there is no control over this.

Changed volume from 10,000 ML/day previously stated in SKM (2012) to 8000-10000 ML/day as a result of more recent investigations into the water regime of Yering Swamp (Jacobs 2015a). Estimated that 8,300 ML/Day is needed to water swamp (based on review of terrain data and environmental watering event, inlet level 62.4 m AHD). Can also be filled by water via pump and pipeline from the Maroondah Aquaduct (20 ML). Note also recent Spadoni's Billabong Investigations (Jacobs 2015b, 2015c, 2015d)suggest overbank flow of 10,300 ML/Day (inlet level of 63.7 m AHD) to engage billabong but have also suggested a range of other options to fill (i.e. inlet that transfers water at lower river flows)

93

Stream	Yarra River	Yarra River		Reach	Yering Gorge to Mullum Mullum Creek				
Compliance point	Yering Gorge			Gauge No.	229200				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
Autumn (Dec- May)	Low flow	Maintain access to habitat for bugs, native indigenous fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), native non- indigenous fish (Macquarie perch and Murray cod) platypus, birds and frogs. Maintain aquatic vegetation and water quality. (M5-1, F5-1, V5-1, W5-1, P5-1, P5-2, BFA5-1)	Wet/Avg/Dry	Minimum flow of 200 ML/day, ML/day in average and wet ye Note – higher flows may be n Dights Falls Weir pool (Reach Reach 5.	allow tributaries to provide add ears. eeded to meet flow recommenc n 6), but 200 ML/day is adequat	itional variation at lations for water q e to meet the obje	oove 200 uality in the ectives for	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. No change in recommended volume from SKM (2012).	
	Fresh	Maintain suitable riffle and LWD habitat by periodically scouring sediment & biofilms, maintain flood-tolerant vegetation on banks, provide opportunities for local fish movement and cue downstream migration of eels (G5-2, M5-3, F5-4, F5-7, V5-3, P5-3, BFA5- 2)	Wet/Avg	Minimum of 750 ML/day, tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are beneficial in average and wet years.	Minimum 3 events + additional events provided by tributaries.	Min 2 days at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	Minor changes to the wording of objective, noting that freshes also cue downstream migration of eels. Updated wording of recommended volume, frequency and duration so that it is consistent with what is written for Reach 4. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative.	
			Dry	750 ML/day	3 events	2 days			
	High	Trigger downstream migration and spawning by Australian Grayling and transport larvae to sea. Cue downstream migration of eels. May facilitate juvenile	Wet/Avg	1300 ML/day. Larger magnitude flows should be passed. 1300 ML/day. Larger	1 (April/May) every year. Must occur 2 in 3 years.	Min 7 day at peak. Event should last for 14 days from	2.0/0.8 Minor changes to the wording of object noting that high flow also cue for downs migration of eels and may facilitate juve platypus dispersal. No change in recommended volume, fr and duration from SKM (2012). Event in 3 years to trigger downstream spawr migration of Australian Grayling, prioriti Note: In relation to Grayling, median tra speed 7-8 km per day, so flow duration be sufficient to allow for long-distance. travelling 80 km, need 10 day rising flow Prefer flow event to be continuous so a disrupt cue. There's little data available associated with spawning of grayling in Yarra. The average flow (Fairfield) whe spawning detected was about 1500 ML Revised rise/fall from 1.4/0.85 to 2.0/0. still lie within the 50-80 th percentile and considered conservative.	Minor changes to the wording of objective, noting that high flow also cue for downstream migration of eels and may facilitate juvenile platypus dispersal.	
		рацуриз dispersal. (G5-1, F5-5, F5-7, BFA5-3)		magnitude flows should be passed.	in 3 years.	Higher and longer duration flows are desirable in average and wet years.		 No change in recommended volume, frequency and duration from SKM (2012). Event required 2 in 3 years to trigger downstream spawning migration of Australian Grayling, prioritise this. Note: In relation to Grayling, median travel speed 7-8 km per day, so flow duration needs to be sufficient to allow for long-distance. e.g. if fish travelling 80 km, need 10 day rising flows. Prefer flow event to be continuous so as to not disrupt cue. There's little data available of flows associated with spawning of grayling in the Yarra. The average flow (Fairfield) when grayling spawning detected was about 1500 ML/day. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80th percentile and are considered conservative. 	

Table D.5 : Flow recommendations for Reach 5. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River			Reach	Yering Gorge to Mullum Mullur	n Creek			
Compliance point	Yering Gorge			Gauge No.	229200				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
								This event can potentially be delivered as a result of tributary flows plus top up flow release.	
Winter / Spring (Jun-Nov)	Low flow	Higher flows increase access to habitat for bugs, native indigenous fish (river blackfish, Australian smelt, ornate galaxias, Australian arguing abort finned cal, abort boaded	Wet/Avg	Median flow 750 ML/day with	a minimum flow of 350 ML/day			Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs.	
		lamprey, pouched lamprey, tupong, broad- finned galaxias, spotted galaxias & common galaxias), native non- indigenous fish (Macquarie perch and Murray cod) platypus, birds and frogs, wet bank vegetation	Dry	/ Spring than Summer / Autumn					
		(M5-2, F5-2, V5-2, W5-1, P5-1, P5-2, BFA5-4)							
	Fresh	Maintain suitable habitat for bugs, fish & platypus, scour gravels to improve Macquarie perch spawning. Provide fish passage, facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad- finned galaxias, spotted galaxias) fishes from downstream river reaches, cue downstream migration by Tupong and eels to the sea to spawn. Maintain flood-tolerant vegetation on banks and entrain organic material. (G5-2, M5-3, F5-3, F5-4, F5-6, F5-7, V5-4, P5-3, BFA5-5)	Wet/Avg/Dry	Wet/Avg/Dry 1300 ML/day- tributary 1 inflows provide variation Ju during average and wet fis years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	1 event occurring in June or July to facilitate migration of fish.	Min 7 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	 Includes explicit reference to fish species and expected migrations in response to fresh. Revised volume, timing and duration of Winter / Spring fresh recommendation documented in SKM (2012). Changed from 2 Freshes of 2500 M/Day for seven days at peak to: 1300 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water). 2500 ML/day fresh between June and September, min 2 days at peak – higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks. 	
	As per fresh above, but hig maintain flood-tolerant veg (G5-2, M5-3, F5-3, F5-4, F V5-5, P5-3, BFA5-5)	As per fresh above, but higher flow to maintain flood-tolerant vegetation on banks (G5-2, M5-3, F5-3, F5-4, F5-6, F5-7, V5-4, V5-5, P5-3, BFA5-5)		2500 ML/day- tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and likely to be beneficial in average and wet years.	1 event between June and September	Min 2 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.		Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release.	
High ¹	High ¹	As per fresh but provides prolonged disturbance to favour flood-tolerant vegetation. Also flushes accumulated fine sediments to maintain or improve quality	Wet/Avg	2500 ML/day	Minimum 1 event in September-October, prior to Macquarie Perch spawning (November-December).	14 days	2.0/0.8	Changed timing of high flow from October- November (SKM 2012) to September-October (prior to Macquarie Perch spawning). 14 day duration is required to prevent terrestrialisation	
		and availability of habitats, including Macquarie perch spawning habitats.	Dry	Not expected to occur in dry y	vears, but allow to occur natural	ly.		 of the riparian zone. The rationalisation for retaining the original 14-day duration is the san as that provided for Reach 2. 	

Stream	Yarra River			Reach	Yering Gorge to Mullum Mullu	m Creek			
Compliance point	Yering Gorge			Gauge No.	229200	229200			
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
		(G5-1, F5-3, F5-3, F5-4, F5-6, F5-7, V5-6, P5-3, BFA5-6)						 Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release. 	
	Bankfull/ Overbank ¹	Maintain existing channel geometry & prevent further vegetation encroachment in channel, entrain organic material, deliver	Wet/Avg	5000-14,000 ML/day	1 per year	1-2 days	N/A	These are natural flow events not managed flows. Combined 'Small Bankfull' and 'Large	
	water to billabongs via flood-runners, provide wetted habitat area for waterbirds and frogs (G5-1, G5-3, V5-6, V5-7, V5-8, V5-9, P5-5, BFA5-7, BFA5-8)		Dry	Not expected, but let it occur	expected, but let it occur naturally.			'Bankfull/Overbank' events. Revised frequency to 1 per year, consistent with upstream reach. Deleted "but avoid during October and November if possible" as previously stated in SKM (2012) as there is no control over timing of flows. Similarly, changed rise/fall to N/A as there is no control over this.	

¹ High, Bankfull and Overbank flows could occur at any time (in Summer also).

Stream	Yarra River		Reach	Mullum Mullum Creek to Dights Fall Weir					
Compliance point	Chandler Highway			Gauge No.	229143				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
Summer / Autumn (Dec- May)	Low flow	Maintain access to habitat for bugs, native indigenous fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad-finned galaxias, spotted galaxias & common galaxias), native non- indigenous fish (Macquarie perch and Murray cod) platypus, birds and frogs, drying period for bank vegetation, minimise risk of low DO conditions (M6-1, F6-1, V6-1, W6-1, P6-1, P6-2, BFA6-1)	Wet/Avg/Dry	Minimum recommendation of Chandler Highway. Minimum recommendation of to maintain mixed conditions i Higher magnitude flows are ad	300 ML/day to minimise risk of 450 ML/day in December to Fe n the Dights Falls Weir Pool, do cceptable.	low DO in pools u bruary if consider ownstream of Cha	ipstream of ed necessary indler Highway.	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. No change in recommended volume from SKM (2012).	
	Fresh	Maintain suitable riffle habitat by periodically scouring sediment & biofilms, maintain flood-tolerant vegetation on banks, provide occasional fish passage for larger bodied fish and cue downstream migration of eels. (G6-2, M6-3, F6-9, V6-3, P6-3, BFA6-2)	Wet/Avg	Minimum of 750 ML/day, tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and beneficial in average and wet years.	Minimum 3 events + additional events provided by tributaries.	Min 2 days at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	Minor changes to the wording of objective, noting that freshes also cue downstream migration of eels. Updated wording of recommended volume, frequency and duration so that it is consistent with what is written for Reach 4 and 5. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release	
			Dry	750 ML/day	3 events	2 days			
	High	Trigger downstream migration and spawning by Australian Grayling and transport larvae to sea. Cue downstream migration of eels. May facilitate juvenile platypus dispersal. (G6-1, F6-7, F6-9, BFA6-3)	Wet/Avg/Dry	1300 ML/day minimum flow, all events with a magnitude greater than this should be protected. This event will be higher and last longer in average and wet years.	1 (April/May), every year. Must occur 2 in 3 years.	Min 7 day at peak. Longer duration flows acceptable in average and wet years.	2.0/0.8	Minor changes to the wording of objective, noting that high flow also cue for downstream migration of eels and may facilitate juvenile platypus dispersal. No change in recommended volume, frequency and duration from SKM (2012). Event required 2 in 3 years to trigger downstream spawning migration of Australian Grayling, prioritise this. Note: In relation to Grayling, median travel speed 7-8 km per day, so flow duration needs to be sufficient to allow for long-distance. e.g. if fish travelling 80 km, need 10 day rising flows. Prefer flow event to be continuous so as to not disrupt cue. There's little data available of flows associated with spawning of grayling in the Yarra. The average flow (Fairfield) when grayling spawning detected was about 1500 ML/day.	

Table D.6 : Flow recommendations for Reach 6. Flow components have been colour coded to highlight those that are managed (blue) from those that are natural (green).

Stream	Yarra River			Reach	Mullum Mullum Creek to Dights Fall Weir				
Compliance point	t Chandler Highway			Gauge No.	229143				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall	Description of changes	
								Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80 th percentile and are considered conservative. This event can potentially be delivered as a result of tributary flows plus top up flow release.	
Winter / Spring (Jun-Nov)	Low flow	Higher flows increase access to habitat for bugs, native indigenous fish (river blackfish, Australian smelt, ornate galaxias, Australian grayling, short-finned eel, short-headed lamprey, pouched lamprey, tupong, broad- finned galaxias, spotted galaxias & common galaxias), native non- indigenous fish (Macquarie perch and Murray cod) platypus, birds and frogs, wet bank vegetation (M6-2, F6-1, V6-2, P6-1, P6-2, BFA6-4)	Wet/Avg Dry	Median flow 750 ML/day, daily additional variation above 750 acceptable. Maximises habita Median flow 600 ML/day, daily	y minimum flow of 350 ML/day, ML/day in average and wet ye at availability. y minimum 350 ML/day.	allow tributaries to ars. Higher magr	Revised objective, includes explicit reference to native fish species in this reach, platypus, birds and frogs. Expectation that low flow will be higher in Winter / Spring than Summer / Autumn season.		
	Fresh	Maintain suitable habitat for bugs, fish & platypus, scour gravels to improve Macquarie perch spawning. Provide fish passage, facilitate upstream immigration of juvenile catadromous (short-finned eel, common galaxias, tupong) and amphidromous (Australian grayling, broad- finned galaxias, spotted galaxias) and adult anadromous (short-headed lamprey, pouched lamprey) fishes from downstream river reaches, cue upstream spawning migration by short-headed lamprey and pouched lamprey from the sea, cue downstream migration by tupong and eels to the sea to spawn. Maintain flood-tolerant vegetation on banks and entrain organic material. (G6-2, M6-3, F6-3, F6-4, F6-5, F6-6, F6-8, F6-9, V6-4, W6-1b, P6-3, BFA6-5)	Wet/Avg/Dry	1300 ML/day tributary inflows and provide variation during average wet years. Do not manipulate flows down to meet recommendation. Higher and longer duration flows are acceptable in average and wet years.	1 event occurring in June or July to facilitate migration of fish.	Min 7 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.	2.0/0.8	 Includes explicit reference to fish species and expected migrations in response to fresh. Revised volume, timing and duration of Winter / Spring fresh recommendation documented in SKM (2012). Changed from 2 Freshes of 2500 M/Day for seven days at peak to: 1300 ML/day fresh, in June or July to facilitate migration of fish, min 7 days at peak (Minimum of 700 ML/day is that which comes out of Reach 2, acknowledging that tributary inflows provide additional water). 2500 ML/day fresh between June and September, min 2 days at peak – higher but shorter duration fresh to maintain flood-tolerant vegetation higher on banks. Revised rise/fall from 1.4/0.85 to 2.0/0.8. These still lie within the 50-80th percentile and are considered conservative. 	

Stream	Yarra River			Reach	Mullum Mullum Creek to Dights Fall Weir				
Compliance point	Chandler Highv	vay		Gauge No.	229143				
Season	Flow	Objective (refer to objectives tables for id reference)	Wet/Avg/Dry	Volume	Frequency and when	Duration	Rise/Fall		
		As per fresh above, but higher flow to maintain flood-tolerant vegetation on banks (G6-2, M6-3, F6-3, F6-4, F6-5, F6-6, F6-8, F6-9, V6-4, V6-5, W6-1b, P6-3, BFA6-5)		2500 ML/day- tributary inflows provide variation during average and wet years. Higher magnitude and longer duration flows are acceptable and likely to be beneficial in average and wet years.	1 event between June and September	Min 2 day at peak, additional duration provided by tributaries. Longer duration flows acceptable in average and wet years.			
	High ¹	As per fresh but provides prolonged disturbance to favour flood-tolerant vegetation. Also flushes accumulated fine sediments to maintain or improve quality	Wet/Avg	2500 ML/day	Minimum 1 event in September-October, prior to Macquarie Perch spawning (November-December).	14 days	N/A		
		Macquarie perch spawning habitats. (G6-1, F63, F6-4, F6-5, F6-6, F6-8, F6-9, V6-6, P6-4, BFA6-6)	Dry	Not expected to occur in dry years, but allow to occur naturally.					
	Bankfull/ Overbank ^{1,2}	Maintain existing channel geometry & prevent further vegetation encroachment in channel, entrain organic material, engage high flow channels, billabongs and low level	Wet/Avg	11,000 – 16,000 ML/day. Higher and longer duration flows are acceptable and likely to be beneficial.	1 per year	1-2 days	N/A		
		floodplains, provide wetted habitat for waterbirds and frogs. (G6-1, G6-3, V6-3, V6-4, V6-5, P6-5, BFA6- 7, BFA6-8)	Dry	Not expected, but let it occur r	naturally.				

¹ High, Bankfull and Overbank flows could occur at any time (in Summer also).

Description of changes
These events can potentially be delivered as a result of tributary flows plus top up flow release.
Changed timing of high flow from October- November (SKM 2012) to September-October (prior to Macquarie Perch spawning). 14 day duration is required to prevent terrestrialisation
retaining the original 14-day duration is the same as that provided for Reach 2. Changed rise/fall to N/A as there is no control over this.
These are natural flow events not managed flows. Combined 'Bankfull' and 'Overbank' to create new recommendation for 'Bankfull/Overbank' events. Revised frequency to 1 per year, consistent with upstream reach
Changed rise/fall to N/A as there is no control over this.
Changed volume from 13,000 ML/day (Bankfull) and 21,500 ML/day (Overbank) to 11,000 to 16,000 ML/day as a result of more recent investigations at Bollin Bollin and Bunyule Billabong.
Under current conditions water enters Bolin Bolin Billabong when flow on the Yarra River (at the nearby Heidelberg gauge) exceeds approximately 11,300 ML/day (corresponding inlet levels unknown) (Jacobs 2017d).
Under current conditions water enters the Banyule Billabong when flow on the Yarra River exceeds 24,000 ML/day (12.2 m AHD at Bunyule Billabong). There is also a pipe connecting the Yarra River to the billabong, which is estimated to trigger once flow on the Yarra River exceeds 16,000 ML/day (11.4 m AHD) (Jacobs 2017a).